
The Sound Object Library
Reference Manual

Victor Lazzarini
Music Technology Laboratory

National University of Ireland, Maynooth

 Version 2.6.1

Preface

The SndObj sound object library started off in 1997 as a research project at the Universidade
Estadual de Londrina, in South Brazil, funded by the Brazilian Research Council, CNPq. The
project was developed at the Nucleo de Musica Contemporanea, by Victor Lazzarini, assisted
by Fernando Accorsi. The first implementations of the library were developed under the IBM
Risc2000 (AIX, with g++) and PC (Windows95, with Visual C++ and g++) platforms. In 1998,
Dr Lazzarini continued the work at the National University of Ireland, Maynooth, where the
library was tested on Solaris, Linux and IRIX. In 2001, version 2.00 was developed, as part of
a major re-assessment of the code and aspects of design of the library, which include a
rationalisation of the SndIO (input/output) class tree, improved code and vectorial processing.
These changes have had a great impact on performance, but the new features also rendered
the new library incompatible with previous versions. Nevertheless, only simple editing is
required to make application code compatible with the new library definitions. The Windows,
Linux (with Open Sound System, OSS or ALSA and Jack), Mac OSX and IRIX
implementations feature realtime audio, which makes the SndObj library a very powerful
toolkit for DSP research and development. This reference manual is intended to facilitate the
use of the library for researchers and musicians.

The Sound Object Library is an object-oriented audio processing library. It is a collection of
classes for synthesis and processing of sound. These can be used to build applications for
computer-generated music. The source code is multi-platform and can be compiled under any
C++ compiler. POSIX compliance (and the presence of the pthread library) is necessary for
the SndThread class. The Cygwin GNU C++ compiler supports this feature on Windows and
the winpthread library is also available for other compilers (Mac OSX and UNIXs are POSIX-
compliant). The cygwin compiler is freely available at http://ww.cygnus.com/cygwin.

Acknowledgements
I would like to thank the Music Department of National Unversity of Ireland, Maynooth, for its
support of this and related research. Thanks also to colleagues from the Computer Science
Department, Tom Lysaght and Joe Timoney for their help and encouragement. Part of this
work was supported with funds from the NUI New Researcher Award.

 iii

Copyright Notice

The Sound Object Library copyright is (c) 1997-2004 Victor Lazzarini, except for the PhOscili
class (PhOscili.h and PhOscili.cpp) whose copyright is (c) 2002 Frank Barknecht. The FFTW
library, part of which is included in this distribution, copyright is (c) 1997-1999 Massachussetts
Institute of Technology. The ASIO API copyright is (c) 1997-1999 Steinberg Soft- und
Hardware GmbH.

 iv

License Notice

This software is licenced under the following terms below.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The "Program", below, refers to any such program or work, and a "work based on the
Program" means either the Program or any derivative work under copyright law: that is to say,
a work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in the
term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends on
what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program
a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at no
charge to all third parties under the terms of this License.

 c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright notice and a notice that there is
no warranty (or else, saying that you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of this License.
(Exception: if the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

 v

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

 a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

 b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the operating system
on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled to
copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

 vi

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up to
the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannotimpose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will beguided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

 vii

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

 viii

Table of Contents

Preface ... ii
Acknowledgements.. iii
Copyright Notice .. iv
License Notice ..v
Table of Contents ...x
SndObj Programming Concepts.. 13
Library Classes .. 16
Class ADSR... 19
Class AdSyn .. 22
Class Allpass ... 24
Class Balance.. 25
Class Bend .. 27
Class ButtBP.. 29
Class ButtBR ... 31
Class ButtHP ... 32
Class ButtLP .. 33
Class Buzz... 34
Class Comb ... 36
Class Convol.. 38
Class DelayLine... 40
Class EnvTable.. 42
Class FastOsc ... 43
Class FFT .. 45
Class Filter... 48
Class FIR ... 50
Class Gain ... 52
Class HammingTable .. 54
Class HarmTable ... 55
Class Name ... 56
Class HiPass ... 57
Class IADSR.. 58
Class IFAdd ... 60
Class IFFT ... 62
Class IFGram... 64
Class ImpulseTable ... 66
Class Interp.. 67
Class Lookup ... 69
Class Lookupi .. 71
Class LowPass .. 72
Class LoPassTable.. 73
Class LP .. 74
Class MidiMap ... 75
Class MidiIn ... 77
Class Mixer .. 79
Class NoteTable .. 81
Class Osc .. 82
Class Osci.. 84
Class Oscil... 85
Class Oscili .. 87
Class Oscilt.. 88
Class Pan .. 89
Class Phase... 91
Class PhOscili.. 93
Class Pitch... 95

Class PlnTable... 97
Class Pluck .. 98
Class PVA.. 100
Class PVBlur.. 102
Class PVEnvTable... 104
Class PVMask ... 105
Class PVMix .. 107
Class PVMorph.. 108
Class PVRead ... 110
Class PVTransp... 112
Class PVS.. 114
Class PVTable ... 115
Class Rand .. 116
Class Randh .. 117
Class Randi ... 119
Class ReSyn .. 120
Class Ring ... 122
Class SinAnal .. 124
Class SinSyn ... 126
Class SndAiff ... 128
Class SndASIO.. 130
Class SndBuffer... 132
Class SndCoreAudio ... 133
Class SndFIO .. 134
Class SndIn ... 136
Class SndIO... 138
Class SndJackIO ... 141
Class SndLoop .. 143
Class SndMidiIn [/SndMidi].. 145
Class SndObj... 148
Class SndPVOCEX ... 155
Class SndRead.. 158
Class SndRTIO.. 160
Class SndSinIO ... 162
Class SndTable ... 166
Class SndThread... 167
Class SndWave ... 170
Class SndWaveX... 172
Class SpecCart.. 175
Class SpecCombine .. 176
Class SpecEnvTable ... 178
Class SpecIn.. 179
Class SpecInterp ... 181
Class SpecMult.. 182
Class SpecPolar .. 184
Class SpecSplit.. 185
Class SpecThresh ... 186
Class SpecVoc .. 187
Class StringFlt ... 187
Class SyncGrain .. 190
Class Table.. 193
Class Tap... 194
Class Tapi.. 195
Class TpTz... 196
Class TrisegTable.. 197
Class Unit .. 199
Class UsrDefTable... 200
Class UsrHarmTable ... 201

 xi

Class VDelay ... 202

 xii

SndObj Programming Concepts

What is a SndObj?
A SndObj (pronounced ‘Sound Object’) is a programming unit that can generate signals with
audio or control characteristics. It has a number of basic attributes, such as an output vector,
a sampling rate, a vectorsize and an input connection (which points to another SndObj).
Depending on the type of SndObj, other attributes will also be featured: an oscillator will have
an input connection for a function table, a delayline will have a delay buffer, etc..

SndObjs contain their own output signal. So, at a given time, if we want to obtain the signal it
generates, we can probe its output vector. This will contain a vecsize number of samples that
the object has generated after it was asked to either process or synthesise a signal. This is a
basic characteristic of SndObjs: signals are internal, as opposed to existing in external buffers
or busses. SndObjs can interface very easily with external signals, but in a pure SndObj
processing chain, signals are internal and hidden.

Generating output
The basic operation that a SndObj performs is to produce an output signal. This is done by
invoking the public member function SndObj::DoProcess(). Each call will generate a new
output vector full of samples, so to generate a continuous signal stream, the DoProcess()
should be invoked repeatedly in a loop (known as the ‘processing loop’). Programs will have
to feature at least one such loop in order to generate audio signals.

As an alternative to directly programming a loop, users can avail of the SndThread services,
which provide processing thread management and a hidden processing loop (see below). The
DoProcess() method is overridable, so each different variety of SndObj will implement it
differently so that different objects can generate different signals. In addition, other types of
processing might be achieved with some overloaded operators (see below in ‘Manipulating
SndObjs’).

Connecting SndObjs
Another basic programming concept found in this library is that SndObjs do not have direct
signal inputs, because of the fact that signals are internal to them. Instead, they will have
input connections to other SndObjs. So an object will read the output signal of another which
is connected to it. Connections are made in the form of pointers (addresses) of SndObjs. So
any type of signal input, either a processing input or a parameter modulator input is
connected in the same way.

Certain processing parameters will then have two types of input: an offset value and a SndObj
connection. The offset value, generally a single floating point value is added to whatever
signal the connected SndObj has generated. In most cases, SndObj connections for
parameters are optional: if they are not present, then only the offset value is used for it. In this
case, they are in fact, not an ‘offset’, but the actual value for the parameter.

Manipulating SndObjs
Apart from invoking processing, users can manipulate SndObjs in other ways. The first
obvious operation is parameter setting, for which different varieties of SndObjs will have
different methods. However, an unified message-passing interface is defined by SndObj, with
the SndObj::Set() and SndObj::Connect() methods. These can be used to change the status
of SndObjs via the various messages defined for them. Messages are also inherited, so the
derived object will have its own set, plus the ones defined for its superclass(es). Set() is used
to set offset and single parameter values. Connect() is used to connect input objects, which
can be of SndObj, SndIO (input and output objects) or Table (function table objects) types.
Messages are C string constants.

13

SndObj Library Reference Concepts

Other simple operations which will modify the output of a SndObj can be made, such as the
ones defined by the operators +, -,* , = , << etc.. Also the output signal buffer can be
accessed with a variety of methods such as SndObj::Output(), SndObj::PushIn(),
SndObj::PopOut(), etc.

Input and Output
Signal input and output is handled by SndIOs (‘sound ios’), which are objects that can write
and read to files, memory, devices, etc. They are modelled in similar ways to SndObjs:
signals are internal, use object connections, etc.. However, they are designed to deal with a
slightly different type of processing. Their main performing methods are SndIO::Read() and
SndIO::Write(). When invoked, these will read or write a vectorsize full of samples from/to
their source/destination, respectively. SndIOs can handle multichannel streams, so their
output vector contains actually frames of samples (in interleaved format).

SndIOs interact with SndObjs in two basic ways. For signal input, SndIOs can be accessed
via SndIn objects. Each channel of input audio has to be connected separately, because
SndObjs in general handle only single signal streams. For signal output, SndObjs can be
connected directly to SndIOs (again, one for each channel). This can be done at construction
time, or more usually using SndIO::SetOutput(). SndIO input and output can also be
performed more directly with the SndObj << and >> operators. For MIDI input, a number of
specialist classes exist, derived from MidiIn, which work in a similar way to SndIn.

Function Tables
Certain SndObjs, for instance oscillators, will depend heavily on tabulated function tables. For
this purpose, a special type of object can be used, a Table object. Tables are very simple
objects whose most important attribute is their actual tabulated function, which is created at
construction time. Tables can be updated at any time, by changing some of their parameters
and invoking Table::MakeTable().

Frequency-domain issues
The Sound Object Library provides classes for time and frequency-domain (spectral)
processing. For the latter, a few special considerations must be made. Time-domain and
spectral SndObjs are designed to fit in together very snuggly in a processing chain. For this
reason, a certain model was employed, which slightly limits the arrangement of such
SndObjs.

For spectral processing, the FFT size must be always power-of-two multiple of the hopsize
(usually a minimum four times that value). When connecting time- and frequency-domain
SndObjs, the hopsize must be the same as the time-domain vectorsize. Generally for an
efficient FFT, the analysis size is set to a power-of-two value. So, in practice, this limits the
vectorsize/hopsize and FFT size values to a limited pairing of values. Although at first this
looks limiting, it will in fact have little impact of the flexibility of spectral processing using the
library. This model, in turn, will facilitate immensely the interaction between frequency- and
time-domain SndObjs. Effectively, if this conditions are met, they can be inter-connected
transparently, even though they are dealing with very different types of signals.

Processing threads
In addition to the basic types of objects discussed above, the Sound Object Library also
includes a special thread management class, SndThread. With this type of object, a pthread-
library based thread can be instantiated and run. This object encapsulates the main
processing loop, calling the basic performing methods of each object that has been add to it.

Using SndThreads (‘sound threads’) is very simple. Once an object has been created and a
chain of SndObjs/SndIOs has been defined, a processing list is initialised using
SndThread::AddObj() or SndThread::Insert(). To start processing a signal,

14

SndObj Library Reference Concepts

SndThread::ProcOn() is invoked. To stop processing, SndThread::ProcOff() can be used.
SndObjs can be deleted from the processing list using SndThread::DeleteObj(). Multiple
SndThreads can be used for parallel processing with SndBuffer objects being used to obtain
the signals from each thread.

15

Library Classes

CLASSES – SUBCLASSES DESCRIPTION

SndObj base class

ADSR envelope generator
 IADSR extended envelope generator
 Balance balancer/envelope follower
 Buzz band-limited pulse generator

Convol FFT-based convolution
DelayLine delay line

 Comb comb filter
 Allpass allpass filter
 FIR direct convolution
 Pitch pitch shifter
 SndLoop sampler/looper
 StringFlt string resonator

Pluck plucked-string generator
 Tap delay tap
 Tapi interpolated delay tap
 VDelay variable delay line
 FastOsc power-of-two table oscillator
 Osc truncating oscillator
 Osci interpolating oscillator
 FFT short-time FFT
 PVA phase vocoder analysis
 IFGram instantaneous frequency analysis
 Filter fixed resonator
 HiPass 1st order high-pass
 LoPass 1st order low-pass
 Lp 2nd order resonating low-pass
 Reson 2nd order band-pass resonator
 TpTz general-purpose 2nd order filter
 Ap 2nd order allpass
 ButtBP Butterworth-response band-pass
 ButtBR Butterworth-response band-reject
 ButtHP Butterworth-response high-pass
 ButtLP Butterworth-response low-pass
 Gain gain attenuation/boost
 Hilb Hilbert transform

IFFT short-time IFFT
 PVS phase vocoder synthesis
 PVRead phase vocoder file reader
 Interp curve segment generator
 Lookup table lookup
 Lookupi interpolated table lookup
 MidiIn MIDI input
 Bend pitch bender
 MidiMap MIDI input mapping
 Mixer adder (signal mixing)
 Oscil basic oscillator
 Oscili interpolating oscillator
 PhOscili phase-mod interpolating oscillator
 Oscilt truncating oscillator
 Pan stereo panning
 Phase phase increment generator

16

SndObj Library Reference Library Classes

 Rand noise
 Randh band-limited noise (sample & hold)
 Randi band-limited noise (interpolating)
 Ring general purpose multiplier
 SinAnal sinusoid analysis

SinSyn cubic-interpolation additive synthesis
ResSyn cubic-interpolation (timescal/frq control)

AdSyn linear-interpolation additive synthesis
 IFAdd additive synthesis from bin frames

 SndIn audio input
 SndRead sound file reader
 SpecIn spectral file input
 SpecMult complex multiplication of spectra
 PVBlur blurring of PV spectral data
 PVMix mixing of PV spectral data
 PVTransp pitch transposition of PV spectral data
 SpecCart cartesian conversion of spectra
 SpecCombine phase & mag combiner
 SpecInterp spectral interpolation
 PVMorph phase vocoder morphing
 PVMask phase vocoder masking
 PVFilter phase vocoder filtering
 SpecPolar polar conversion of spectra
 SpecSplit phase & mag splitter
 SpecThresh thresholding
 SpecVoc cross-synthesis of spectra
 SyncGrain granular synthesis
 Unit unit/ramp generator

SndIO input/output base
class

SndASIO ASIO audio
SndBuffer signal buffering

 SndFIO raw soundfile IO
 SndWave RIFF-Wave soundfile IO
 SndWaveX RIFF-WaveX soundfile IO
 SndPVOCEX PVOCEX spectral file IO
 SndSinIO SINUSEX spectral file IO
 SndAiff AIFF soundfile IO
 SndMidi MIDI IO specs
 SndMidiIn MIDI input
 SndRTIO realtime IO (ADC/DAC)
 SndCoreAudio CoreAudio realtime IO
 SndJackIO Jack Connection Kit IO

Table function-table
base class

 EnvTable envelope function
table

 HammingTable inverted-raised cosine windows
 HarmTable harmonic functions
 ImpulseTable FIR filter coefficients (impulse response)
 LoPassTable low-pass FIR coefficients

 17

SndObj Library Reference Library Classes

 NoteTable MIDI to Hz conversion
 PlnTable polynomials
 PVEnvTable PV-format spectral envelope
 SpecEnvTable complex-format spectral envelope
 PVTable PV-analysis table

TrisegTable three-segment functions
 SndTable soundfiles
 UsrDefTable user-defined
 UsrHarmTable harmonic functions (user-definable)

SndThread sound processing thread management

 18

Class ADSR

Description
This object generates an attack - decay - sustain - release shaped signal at the output.
Alternatively, it can similarly shape an input signal, acting as a modifier. Other parameters to it
are max amplitude and total duration of the envelope period, after which the whole cycle is
repeated.

Construction
ADSR()
ADSR(float att, float maxamp, float dec, float sus, float rel, float dur, SndObj* InObj = 0,

int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
parameter/state setting:
void SetMaxAmp(float maxamp)
void SetADSR(float att, float dec, float sus, float rel)
void SetDur(float dur)

envelope stage control:
void Release()
void Sustain()
void Restart()

Messages
[set] “attack”
[set] “decay”
[set] “sustain”
[set] “release”
[set] “maxamp”
[set] “duration”
[set] ”go to release”
[set] ”lock to sustain”
[set] “restart”

Details

construction
ADSR()
ADSR(float att, float maxamp, float dec, float sus, float rel, float dur, SndObj* InObj = 0,
int vecsize=DEF_VECSIZE, float sr=DEF_SR)

ADSR objects can be constructed either by the default constructor (which resets the envelope
parameters to 0) or by the full constructor. Its arguments are:

float att: attack time, or rise time, in secs. Time taken for the signal to change from 0.f to
maxamp.
float maxamp: maximum amplitude after rise time. It is a multiplier, in case of the shaping of
an input signal.
float dec: decay time, in secs. Time taken for the signal to change from maxamp to sus.
float sus: sustain amplitude after decay time. Again, a multiplier, in case of envelope shaping.
The sustain period is calculated on the basis of the difference between the total duration and
the sum of the attack, decay and release times.

19

SndObj Library Reference Class ADSR

float rel: release time, in secs, after the sustain period, during which the signal changes from
sus back to 0.f. It is calculated backwards from the end, taken from the total duration of the
envelope.
float dur: total duration of the envelope, in secs, or the envelope period. This ADSR is
designed to loop, so the whole shape will be repeated after the total duration is completed.
SndObj* InObj: input object, pointer to the location of a SndObj-derived object. Defaults to 0,
which means no input object, so the ADSR object is used as a signal generator.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetMaxAmp(float maxamp)
void SetADSR(float att, float dec, float sus, float rel)
void SetDur(float dur)

These methods are used to set the different parameters that make up the ADSR envelope.
Their intepretation is the same as found in the constructor.

void Release()
void Sustain()

These two methods control the sustain period. When Sustain() is called, the ADSR locks into
the sustain phase when the envelope reaches it. Release() makes it immediately jump into
the release phase, from anywhere in the envelope. These methods are designed for realtime
applications, making the envelope respond to MIDI or other types of control. The envelope
breakpoints behave normally if these methods are not invoked.

void Restart()

This method resets the internal envelope count, effectively making it restart from the attack
phase. Its main application is to provide a way of controlling the envelope in realtime, when
used in conjuction with Release() and Sustain(). The ADSR is set to restart automatically
when the four phases are completed (normal behaviour when Release()/Sustain() are not
invoked).

Examples
ADSR is usually constructed by setting the envelope parameters in the constructor. The
example below creates an ADSR object which will shape the output of a previously declared
object named oscillator for the period of 1 sec.

ADSR envelope(.01f, 16000.f, .2f, 12000.f, .05f, 1.f, &oscillator);

If an object input is not given, ADSR works as signal generator. This generates a signal that
has a period of 4 secs, attack of 0.01, decay of 0.02, sustaining at 8000 for 3.87 secs and
decaying for 0.1 secs.

ADSR envelope(.01f, 1000.f, .02f , 8000.f, .1f, 4.f);

Audio processing is performed by repeatedely invoking the DoProcess() (as in all SndObj-
derived classes). For details on DoProcess() consult the manual page on Class SndObj.
Placing DoProcess() in a loop (or using a SndThread object) will achieve this:

while(processing_on){

oscillator.DoProcess();
envelope.DoProcess();

20

SndObj Library Reference Class ADSR

output.Write();

}

Calling Restart(), Sustain() and Release() will control the envelope in realtime:

while(processing_on){

 if(noteon) {
 envelope.Restart();
 envelope.Sustain();
}
 if(noteoff) envelope.Release()

oscillator.DoProcess();
envelope.DoProcess();
output.Write();

}

21

Class AdSyn

Description
The AdSyn class implements sinusoidal additive resynthesis, based on a standard linear
interpolation algorithm. The class takes an input from a SinAnal-type class, which consists of
a series of tracks containing amplitude, frequency and phase information. Tracks are
identified by IDs given by the input object, which are then used to match them between hop
periods. AdSyn objects can resynthesise any number of tracks up to the maximum tracks
found at their input. AdSyn can modify the timescale and pitch of the resynthesis.

Construction
AdSyn()
AdSyn(SinAnal* input, int maxtracks, Table* table, float pitch=1.f, float scale=1.f,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetPitch(float pitch)

Messages
[set] “pitch”

Details

construction

construction
AdSyn()
AdSyn(SinAnal* input, int maxtracks, Table* table, float pitch=1.f, float scale=1.f,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct a AdSyn object:

SinAnal* input: input object object, of the SinAnal type, from which the tracks to be
resynthesised will be read.
int maxtracks: max resynthesis tracks, should be <= tracks generated by the input object.
Table* table: table object containing a wavetable to be used by each oscillator in the
resynthesis, typically a cosine wave.
float pitch: pitch ratio used in the resynthesis (1.0 = unaltered).
float scale: amplitude scaling of output.
int vecsize: object vector size, also determines the synthesis hopsize between analysis
frames (defaults to 256).
float sr: sampling rate in Hz (defaults to 44100).

public methods
void SetPitch(float pitch)

Examples

The following connections are a simple example of the use of AdSyn to resynthesise track
data generated by SinAnal:

HarmTable table(4000, 1, 1, 0.75); // cosine wave

22

SndObj Library Reference Class AdSyn

HammingTable window(fftsize, 0.5); // hanning window

// input sound
SndWave input(infile,READ,1,16,0,0.f,decimation);
SndIn insound(&input, 1, decimation);

// IFD analysis
IFGram ifgram(&window,&insound,1.f,fftsize,decimation);
// Sinusoidal analysis
SinAnal sinus(&ifgram,thresh,intracks);
// Sinusoidal resynthesis
AdSyn synth(&sinus,outracks,&table,pitch,scale,interpolation);

// output sound
SndWave output(outfile, OVERWRITE,1,16,0,0.f,interpolation);
output.SetOutput(1, &synth);

This code takes an input sound, from a file and passes it through the analysis process and
then the data is resynthesized. The timescale change is determined by the
decimation:interpolation ratio. The pitch of the resynthesis is determined by the variable
pitch. In order to implement processing, the programmer either needs to write a loop and call
the reading/writing and processing methods, or use a SndThread object, passing these
objects to it. This example is based on a simple modification of src/examples/sinus.cpp.

23

Class Allpass

Description
The allpass object implements an allpass filter. It recirculates a signal through an allpass
network, rescaled by a feedback/feedforward gain factor. Its parameters are delay (loop) time,
gain and input object.

Construction
Allpass()
Allpass(float gain, float delaytime, SndObj* InObj = 0, int vecsize=DEF_VECSIZE,

float sr=DEF_SR)

Details

construction
Allpass()
Allpass(float gain, float delaytime, SndObj* InObj = 0, int vecsize=DEF_VECSIZE,
float sr=DEF_SR)

Allpass objects can be created using either constructor. The default constructor sets all
parameters to 0. The full constructor arguments are:

float gain: gain factor, which will rescale the signal before it re-enters the delay line. Normally
< 1, anything over 1 will cause the signal to continually grow, with possibly disastrous results.
float delaytime: delay time, in seconds.
SndObj* InObj: input object, pointer to the location of a SndObj-derived object.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples
The Allpass class is derived from Comb, which in its turn is derived from DelayLine, so all
messages and public methods defined for those classes are also available to objects of this
class. This creates an allpass with gain of 0.5 and a delay loop of 10ms, processing an input
object inobj:

Allpass ap(.5f, .01f, &inobj);

The main processing method, as with all SndObj classes, is DoProcess(), overriden to
implement an allpass network. It is usually called within a loop (if SndThread is not being
used) creating a vector of samples in the output.

while(processing_on){

inobj.DoProcess();
ap.DoProcess();
output.Write();

}

24

Class Balance

Description
Objects of this class balance two signals. They measure the rms power of the second input
signal (the control signal), by a combination of rectification and low-pass filtering. That
information is used to control the gain of the first signal. This signal is then fed to the output of
the object.

Construction
Balance()
Balance(SndObj* input1, SndObj* input2, float fr=10.f, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

Public Methods
void SetInput(SndObj* input1, SndObj* input2)
short SetLPFreq(float fr)

Messages
[set] “lowpass frequency”
[connect] “comparator”

Details

construction
Balance()
Balance(SndObj* input1, SndObj* input2, float fr=10.f, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

Objects can be created using the default constructor Balance(), where the state is set to the
default values. The full constructor has the following arguments:

SndObj* input1: input object 1, pointer to the location of a SndObj-derived object. This is the
signal input, which will be balanced to the other input. It is set to 0 by the default constructor.
SndObj* input2: input object 2, pointer to the location of a SndObj-derived object. This is the
control input, which will be used to balance the other signal. It is set to 0 by the default
constructor.
float fr: cut-off frequency of the internal low-pass filter. Defaults to 10.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetInput(SndObj* input1, SndObj* input2)

This method connects the two inpus to this object. Input1 is the signal input, whereas input2 is
the comparator. They are both pointers to objects that generate these signals.

short SetLPFreq(float fr)

This method sets the internal lowpass filter frequency which is used in the rms estimation
process.

25

SndObj Library Reference Class Balance

Examples

A Balance object is used to force a signal to keep to the same rms level as a comparator
signal. It is usually created by passing the pointers to the two inputs to the constructor:

Balance balan(&inobj, &compobj);

One of its uses is to make the output of a filter as loud (or as quiet) as the input:

Filter fil(1000.f, 1.f, &inobj);
Balance bal(&fil, &inobj);

while(processing_on){

inobj.DoProcess();
fil.DoProcess();
bal.DoProcess();
output.Write();

}

26

Class Bend

Description
This object reads pitchbend messages from one MIDI channel from a SndMidiIn object and
bend an input signal by an specified proportional amount. This modifies the signal values by a
set percentage according to the pitchbend amount and the specified range.

Construction
Bend()
Bend(SndMidiIn* input, SndObj *inObj, float range, short channel=1, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetRange(short channel)

Messages
[set] “range”

Details

construction
Bend()
Bend(SndMidiIn* input, SndObj *inObj, float range, short channel=1, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

Bend objects are constructed with the following parameters:

SndMidiIn* input: pointer to the location of a SndMidiIn object (midi message source).
SndObj* inObj: pointer to the location of an input SndObj-derived object (signal source)
float range: percentage of positive/negative change in the input signal. For example, 10.f will
indicate 10% change when the pitchbend message received is max/min. A value of a 100.0
will be "bent" to a maximum of 110.0 or a minimum of 90.0
short channel: MIDI channel from which a message will be read. Defaults to channel 1.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetRange(short channel)

This method sets the percentage range of the pitchbend change, as discussed above.

Examples

Bend objects are usually used to bend frequency signals by a set percentage, but they can be
used for any other purpose. A Bend object is created by passing it a SndMidiIn object pointer
(which reads the MIDI input) and a signal object pointer which will generate the signal to be
modified:

Bend pitchbend(&midiobj, ¬eobj, 12.5f);

Here a SndMidiIn object midiobj and a SndObj (or derived) noteobj are passed to pitchbend,
which will bend the signal to a max/min of 12.5%. If noteobj is mapping MIDI notes to

27

SndObj Library Reference Class Bend

frequency, then the signal out of pitchbend can be used to control the frequency of, say, an
oscillator (call it oscilla):

while(processing_on){

midiobj.Read();
noteobj.DoProcess();
pitchbend.DoProcess();
oscilla.DoProcess();
output.Write();

}

28

Class ButtBP

Description
The ButtBP class is a TpTz-derived class that implements a Butterworth-response band-pass
filter. These types of filters have a maximally flat pass-band, providing superior precision and
stopband attenuation.

Construction
ButtBP()
ButtBP(float fr, float bw, SndObj* inObj, SndObj* inputfreq = 0, SndObj* inputbw = 0, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetFreq(float fr, SndObj* inputfr=0)
void SetBW(float bw, SndObj* inputbw=0)

Messages
[set, connect] “frequency”
[set, connect] “bandwidth”

Details

construction
ButtBP()
ButtBP(float fr, float bw, SndObj* inObj, SndObj* inputfreq = 0, SndObj* inputbw = 0, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the ButtBP class. Constructor arguments are:

float fr: centre frequency offset, in Hz, default constructor sets it to 1000.f.
float bw: bandwidth offset, in Hz, default constructor sets it to 250.f.
SndObj* inObj: pointer to an input SndObj-derived object.
SndObj* inputfreq: frequency control input, pointer to the location of a SndObj-derived object.
The centre frequency can be controlled by a time-varying signal from another SndObj-derived
object. A signal is fed from the input object and added to the frequency offset value. Defaults
to 0, no frequency input object
SndObj* inputbw: bandwidth control input, pointer to the location of a SndObj-derived object.
The bandwidth can be controlled by a time-varying signal from another SndObj-derived
object. A signal is fed from the input object and added to the bandwidth offset value. Defaults
to 0, no bandwidth input object
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetFreq(float fr, SndObj* inputfr=0)
void SetBW(float bw, SndObj* inputbw=0)

These methods set the centre frequency and bandwidth, respectively, of the filter
implemented by the object. The float parameters are offsets (or fixed scalar values) and the
SndObj pointers are the modulating signal inputs.

29

SndObj Library Reference Class ButtBP

Examples

ButtBP objects implement filters that can be used to selectively eliminate certain frequencies
and emphasize others. The wider the bandwidth, the less selective the filter is. Narrower
bandwidths will suffer from poor time response. A ButtBP object is usually created by passing
values for the centre frequency/bandwidth, an input signal object pointer, and optionally
pointers to objects that produce a signal to modulate those parameters:

ButtBP filter(1000.f, 10.f, &inobj, &infreq);

Here, a signal produced by inobj is filtered by this object with a BW of 10 Hz and a frequency
offset of 1000.f. The signal generated by infreq modulates the frequency of the filter (it is
added to the offset).

while(processing_on){

inobj.DoProcess();
infreq.DoProcess();
filter.DoProcess();
output.Write();

}

30

Class ButtBR

Description
The ButtBR class is a ButtBP-derived class that implements a Butterworth-response band-
reject filter. The band-reject filter has the reverse effect of the band-pass filter ButtBP.

Construction
ButtBR()
ButtBR(float fr, float bw, SndObj* inObj, SndObj* inputfreq = 0, SndObj* inputbw = 0, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
ButtBR()
ButtBR(float fr, float bw, SndObj* inObj, SndObj* inputfreq = 0, SndObj* inputbw = 0, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the ButtBR class. Constructor arguments are:

float fr: centre frequency offset, in Hz, default constructor sets it to 1000.f.
float bw: bandwidth offset, in Hz, default constructor sets it to 250.f.
SndObj* inObj: pointer to an input SndObj-derived object.
SndObj* inputfreq: frequency control input, pointer to the location of a SndObj-derived object.
The centre frequency can be controlled by a time-varying signal from another SndObj-derived
object. A signal is fed from the input object and added to the frequency offset value. Defaults
to 0, no frequency input object
SndObj* inputbw: bandwidth control input, pointer to the location of a SndObj-derived object.
The bandwidth can be controlled by a time-varying signal from another SndObj-derived
object. A signal is fed from the input object and added to the bandwidth offset value. Defaults
to 0, no bandwidth input object
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples

ButtBR objects implement filters that can be used to selectively eliminate certain frequencies
within a particular band. A ButtBR object is usually created by passing values for the centre
frequency/bandwidth, an input signal object pointer, and optionally pointers to objects that
produce a signal to modulate those parameters:

ButtBR filter(500.f, 100.f, &inobj);

Here, a signal produced by inobj is filtered by this object with a BW of 100 Hz and a frequency
of 500.f. Components falling within this band will be attenuated/eliminated.

while(processing_on){
inobj.DoProcess();
filter.DoProcess();
output.Write();
}

31

Class ButtHP

Description
The ButtHP class is a ButtBP-derived class that implements a Butterworth-response high-
pass filter. The band-reject filter has the reverse effect of the low-pass filter ButtLP.

Construction
ButtHP()
ButtHP(float fr, SndObj* inObj, SndObj* inputfreq = 0, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

Details

construction
ButtHP()
ButtHP(float fr, SndObj* inObj, SndObj* inputfreq = 0, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

These methods construct an object of the ButtHP class. Constructor arguments are:

float fr: cutoff frequency offset, in Hz, default constructor sets it to 1000.f.
SndObj* inObj: pointer to an input SndObj-derived object.
SndObj* inputfreq: frequency control input, pointer to the location of a SndObj-derived object.
The centre frequency can be controlled by a time-varying signal from another SndObj-derived
object. A signal is fed from the input object and added to the frequency offset value. Defaults
to 0, no frequency input object
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples

ButtHP objects implement filters that can be used to selectively eliminate certain frequencies
below a particular frequency. A ButtHP object is usually created by passing a value for the
cutoff frequency, an input signal object pointer, and optionally a pointer to an object that
produce a signal to modulate the frequency:

ButtHP filter(1000.f, &inobj);

Here, a signal produced by inobj is filtered by this object with a frequency of 1000.f.
Components falling below this frequency will be attenuated/eliminated.

while(processing_on){
inobj.DoProcess();
filter.DoProcess();
output.Write();
}

32

Class ButtLP

Description
The ButtLP class is a ButtBP-derived class that implements a Butterworth-response low-pass
filter. The band-reject filter has the reverse effect of the high-pass filter ButtHP.

Construction
ButtLP()
ButtLP(float fr, SndObj* inObj, SndObj* inputfreq = 0, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

Details

construction
ButtLP()
ButtLP(float fr, SndObj* inObj, SndObj* inputfreq = 0, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

These methods construct an object of the ButtLP class. Constructor arguments are:

float fr: cutoff frequency offset, in Hz, default constructor sets it to 1000.f.
SndObj* inObj: pointer to an input SndObj-derived object.
SndObj* inputfreq: frequency control input, pointer to the location of a SndObj-derived object.
The centre frequency can be controlled by a time-varying signal from another SndObj-derived
object. A signal is fed from the input object and added to the frequency offset value. Defaults
to 0, no frequency input object
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples

ButtLP objects implement filters that can be used to selectively eliminate certain frequencies
above a particular frequency. A ButtLP object is usually created by passing a value for the
cutoff frequency, an input signal object pointer, and optionally a pointer to an object that
produce a signal to modulate the frequency:

ButtLP filter(2500.f, &inobj);

Here, a signal produced by inobj is filtered by this object with a frequency of 2500.f.
Components falling above this frequency will be attenuated/eliminated.

while(processing_on){
inobj.DoProcess();
filter.DoProcess();
output.Write();
}

33

Class Buzz

Description
This object is a broadband signal generator, implemented using a discrete summation
formula. It basically generates a pulse wave with an user-specified number of harmonics.
Other required parameters are fundamental frequency and amplitude, which can be controlled
by the output of other SndObj-derived objects.

Construction
Buzz()
Buzz(float fr, float amp, int harm, float inputfr=0, float inputamp=0, int
vecsize=DEF_VECSIZE. float sr=DEF_SR)

Public Methods
void SetHarm(short harms)
void SetFreq(float fr, SndObj* InFrObj=0)
void SetAmp(float amp, SndObj* InAmpObj=0)

Messages
[set, connect] “frequency”
[set, connect] “amplitude”
[set] “harmonics”

Details

construction
Buzz()
Buzz(float fr, float amp, int harm, float inputfr=0, float inputamp=0, int
vecsize=DEF_VECSIZE. float sr=DEF_SR)

These methods construct an object of the Buzz class. Construction parameters are:

float fr: fundamental frequency offset, in Hz. Initialised to 440 by the default constructor.
float amp: amplitude offset. Initialised to 1.f .
short harms: number of harmonics. Initialized to 10.
SndObj* InFrObj: frequency control input, pointer to the location of a SndObj-derived object.
The fundamental frequency can be controlled by a time-varying signal from another SndObj-
derived object. A signal is fed from the input object and added to the frequency offset value.
Defaults to 0, no frequency input object
SndObj* InAmpObj: amplitude control input, pointer to the location of a SndObj-derived
object. Defaults to 0, which means no amplitude input object, so the amplitude is fixed to the
amplitude offset value. This is added to the amplitude control input signal when a SndObj-
derived object is patched in.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetHarm(short harms)
void SetFreq(float fr, SndObj* InFrObj=0)
void SetAmp(float amp, SndObj* InAmpObj=0)

34

SndObj Library Reference Class Buzz

These methods set the parameters that make up the state of a Buzz object. SetHarm() sets
the number of harmonics present in the pulse wave.It has the side-effect of causing a
discontinuity in the signal (perceived as an ‘attack’) because of the way the phases of the
component oscillators are reset. SetFreq() and SetAmp() set the parameters relating to
frequency and amplitude, respectively. The float arguments are offsets and the SndObj
pointers are the input signal objects which will modulate the parameters.

Examples

A Buzz implements a band-limited pulse. It produces a harmonic-rich signal, which can be
shaped by filters etc:

Buzz blp(100.f, 16000.f, 30);
Filter fil(1200.f, 50.f, &blp);

This example shows a Buzz object blp which generates a wave with a fundamental frequency
of 100 Hz and 30 harmonics (100, 200, …, 3000). The Filter object fil shapes the signal with a
reson-type band-pass shape centered around 1200 Hz.

while(processing_on){

blp.doProcess();
fil.DoProcess();
output.Write();

}

35

Class Comb

Description
Objects fo the class Comb implement a Comb filter. They recirculate a signal through a delay
line, rescaled by a feedback gain factor. Their parameters are delay (loop) time, gain and
input object.

Construction
Comb()
Comb(float gain, float delaytime, SndObj* InObj, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

Public Methods
void SetGain(float gain)

Messages
[set] “gain”

Details

construction
Comb()
Comb(float gain, float delaytime, SndObj* InObj, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

These methods construct an object of the Comb class. Construction parameters are:

float gain: gain factor, which will rescale the signal before it re-enters the delay line. Normally
< 1, anything over 1 will cause the signal to continually grow, with possibly disastrous results.
float delaytime: delay time, in seconds.
SndObj* InObj: input object, pointer to the location of a SndObj-derived object.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetGain(float gain)

This method sets the value for the feedback gain.

Examples
A comb filter basically recirculates a signal through a delay line, scaling it by a feedback gain
factor. If this factor is below 1, then the signal will eventually die off after a certain time. Comb
filters can be used as component reverberators to implement diffuse-field reverberation.

Comb rev(.9f, .1f, &inobj);

This creates a comb filter with gain of 0.9 and a delay loop of 100ms, processing an input
object inobj.

while(processing_on){

inobj.DoProcess();

36

SndObj Library Reference Class Comb

rev.DoProcess();
output.Write();

}

37

Class Convol

Description
The class Convol implements fast convolution using the fft of an impulse response and an
input signal. The impulse response is taken from a Table object of any size, it is padded with
zeros to the next power-of-two size and the fft is calculated. The input signal is transformed
using the same size fft and the two spectra are multiplied together. The result is transformed
back into time domain and successive frames are overlap-added. As a result the convolution
output will have a delay of fftsize samples in relation to the input.

Construction
Convol()
Convol(Table* impulse, SndObj* input, float scale, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

Public Methods
void SetImpulse(Table* impulse, float scale);

Messages
[set] “scale”
[connect] “impulse”

Details

construction
Convol()
Convol(Table* impulse, SndObj* input, float scale, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

These methods construct a Convol object. The arguments to the full constructor are:

Table *impulse: a pointer to a Table-derived object containing the impulse response.
SndObj *input: a pointer to a SndObj-derived object which will generate the signal to be
transformed by this object.
float scale: a scaling factor to be applied to the impulse response. This can be used to
boost/attenuate the impulse response gain, if necessary.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetImpulse(Table* impulse, float scale);

This method connects the Table-derived object containing the impulse response to this object
and also sets the scaling factor for it.

Examples
The fast convolution process is often used with longer impulse responses. For shorter ones,
the direct convolution (class FIR) will do. The process is reasonably fast, but a delay is
introduced (as explained above) due to the fft process. A Convol object is constructed by
passing a table object pointer holding the impulse, an input signal object and a scaling factor:

38

SndObj Library Reference Class Convol

Convol cvlve(&impobj, &inobj, 16000.f);

This object will process an input object inobj using the impulse response in impobj. Tables are
usually normalised, so that we will scale the impulse response to around –6dB (in 16-bit).

while(processing_on){

inobj.DoProcess();
cvlve.DoProcess();
output.Write();

}

39

Class DelayLine

Description
The DelayLine object is a simple delay processor. It delays a signal by an user-specified time.
Its parameters are delay time and input object.

Construction
DelayLine()
DelayLine(float delaytime, SndObj* InObj, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetDelayTime(float delaytime)
void Reset()

Messages
[set] “max delaytime”

Details

construction
DelayLine()
DelayLine(float delaytime, SndObj* InObj, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the DelayLine class. Construction parameters are:

float delaytime: delay time, in seconds.
SndObj* InObj: input object, pointer to the location of a SndObj-derived object.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetDelayTime(float delaytime)

This method sets the maximum delay time. It has the side-effect of clearing the delay buffer
as it re-sizes it.

void Reset()

This method clears the delay buffer, setting all its samples to zero. It is called automatically by
the constructor and when the delay line is resized.

Examples

The delay line simply delays a signal by a certain time. It can be used to create slap-back
echo effects or to time-align a signal. It can also be tapped (by Tap/Tapi objects). It is usually
created by setting a delay time and connecting an input into it:

DelayLine delay(0.5f, &inobj);

This connects the input object inobj to the DelayLine object. The output will be delayed by 0.5
seconds.

40

SndObj Library Reference Class DelayLine

while(processing_on){

inobj.DoProcess();
delay.DoProcess();
output.Write();

}

41

Class EnvTable

Description
The EnvTable object builds a function table based on supplied envelope parameters. The
envelope is defined by a starting point and two arrays: (1) segment legnths and (2) end points
of each segment. The segments can be either exponential or linear. The table values are
normalised.

Construction
EnvTable()
EnvTable(long L, int segments, float start,
 float* points, float* lengths,float type = 0.f)

Public Methods
void SetEnvelope(int segments, float start, float* points, float* lengths,
 float)

Details

construction
EnvTable()
EnvTable(long L, int segments, float start,
 float* points, float* lengths,float type = 0.f,
 float sr=44100.f,float nyquistamp=0.f)

Constructs a EnvTable object.

long L: table length.
int segments: number of envelope segments.
float start: starting value of envelope.
float* points: an array of floats, containing the end values of each segment. Must match the
above number of segments.
float* lengths: an array of floats, containing the lengths of each segment. Must match the
above number of segments. Segment lengths are normalised to the table size (added up and
then each one is divided by that total and multiplied by the table size).
float type: type of curve. Linear = 0, inverse exponential < 0 < exponential.

public methods
void SetEnvelope(int segments, float start, float* points, float* lengths,
 loat type, float nyquistamp)

This method sets the envelope parameters. MakeTable() is invoked by this method.

42

Class FastOsc

Description
FastOsc implements a fixed truncating table oscillator which works exclusively with power-of-
two size tables (for other table sizes see class Oscil).

Construction
FastOsc()
FastOsc(Table* table, float fr, float amp, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetFreq(float fr)
void SetAmp(float amp)
void SetPhase(float phase)
void SetTable(Table* table)

Messages
[set] “frequency”
[set] “amplitude”
[set] “phase”
[connect] “table”

Details

construction
FastOsc()
FastOsc(Table* table, float fr, float amp, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct a FastOsc object. Its parameters are:

Table* table: pointer to the location of a Table-derived object containing the function table to
be scanned.
float fr: fundamental frequency, in Hz. Initialised to 440 by the default constructor.
float amp: amplitude. Initialised to 16000.f .
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetFreq(float fr)
void SetAmp(float amp)
void SetPhase(float phase)
void SetTable(Table* table)

These methods set the parameters that make up a FastOsc object. Frequency is set in Hz,
amplitude is arbitrary (it depends on the scaling/precision used) and the phase is in fractions
of a cycle (0-1.0). SetTable() connects a table object to this oscillator.

Examples

FastOsc can be used to generate any type of periodic (and one-shot) signals. One typical use
is to generate a pitched signal by scanning a table containing a certain wave shape. The table
is required to be power-of-two size (2,4,8,…,512, 1024, 2048,…, 228).

43

SndObj Library Reference Class FastOsc

HarmTable sinobj(1024, SINE,1);
FastOsc oscilla(&sinobj, 100.f, 16000.f);

The example above shows an object named oscilla which is connected to a table object
sinobj. The object will generate a sinewave signal with 100Hz frequency and amplitude
16000.f (ca. –6dB in 16-bit):

while(processing_on){

oscilla.DoProcess();
output.Write();

}

44

Class FFT

Description
The FFT class implements short-time fourier transform (STFT). An input signal is windowed,
transformed by the FFT and scaled. This process happens at regular intervals, determined by
the hopsize, which is equivalent to the time-domain vectorsize. The output of this class holds
a vector with the size of the FFT containing a real, imaginary pair for every frequency point on
the positive side of the spectrum. The real parts for the 0 and SR/2 Hz points are packed
together as the first pair in the vector [0,1] (these points are purely real). The limitations for
hopsize and fftsize are as follows: (a) the hopsize has to match the time-domain vector size
used by the input object (b) the FFT size has to be a power-of-two multiple of the hopsize. As
a consequence of this FFT objects (and other spectral processing objects) can be freely
combined with time-domain objects in the same processing loop (and within a SndThread
object). The FFT size determines the size of the output vector and the hopsize the time
interval (in samples) between successive FFT frames.

Construction
FFT()
FFT(Table* window, SndObj* input, float scale=1.f, int fftsize=DEF_FFTSIZE, int
hopsize=DEF_VECSIZE, float m_sr=DEF_SR)

Public Methods
parameter/state access:
int GetFFTSize()
int GetHopSize()

parameter/state setting:
void SetWindow(Table* window)
void SetScale(float scale)
void SetFFTSize(int fftsize)
void SetHopSize(int hopsize)

Messages
[set] “scale”
[set] “fft size”
[set] “hop size”
[connect] “window”

Details

construction
FFT()
FFT(Table* window, SndObj* input, float scale=1.f, int fftsize=DEF_FFTSIZE, int
hopsize=DEF_VECSIZE, float m_sr=DEF_SR)

These methods construct a FFT object. Its parameters are:

Table* window: pointer to a Table-derived object containing a window shape to be used in the
analysis.
SndObj* input: input signal object (SndObj-derived). Its vector size should match the hopsize
set for this FFT object.

45

SndObj Library Reference Class FFT

float scale: scaling factor. The overall scaling, after transformation is scale/N, where N is the
FFT size.
int fftsize: the FFT size, the number of frequency points in the analysis, which will also
determine the output vector size. Defaults to DEF_FFTSIZE (1024).
int hopsize: the hopsize, or decimation, which determines the number of samples in between
successive FFT analysis frames. Defaults to DEF_VECSIZE (256).
float sr: the sampling rate for this object. Defaults to DEF_SR (44100.f).

public methods
int GetFFTSize()
int GetHopSize()

These methods retrieve the FFT size and hopsize, which determine the most important
aspects of analysis: the number of frequency points and the decimation.

void SetWindow(Table* window)
void SetScale(float scale)
void SetFFTSize(int fftsize)
void SetHopSize(int hopsize)

These methods set the parameters that make up a FFT object. They are usually set before
performance.

Examples

FFT objects are used to transform a time-domain signal into a frequency-domain signal. The
resulting output is a series of spectral frames generated every hopsize/SR seconds (after a
call to FFT::DoProcess()). These frames will contain fftsize/2 + 1 frequency points between 0
and SR/2 (inclusive). With the exception of 0 and SR/2 Hz, each frequency point is a complex
pair of values containg the real and imaginary values for that frequency. In order to fit all
points in a single fftsize vector, the real parts of the 0 and SR/2 Hz points are packed together
in the first two positions of the array. This is possible because they are purely real (imaginary
parts are 0). The FFT output is normalised, ie. scaled by 1/fftsize, and an optional scaling
factor is also applied. An FFT object is usually constructed by passing a window table and an
input to it:

FFT analysis(&winobj, &inobj);

Its output can be further transformed by a spectral processing object and the result can be
then transformed back into the time-domain (using IFFT). The example below multiplies two
spectra:

FFT spec1(&winobj, &inobj1);
FFT spec2(&winobj, &inobj2);
SpecMult mult(&spec1, &spec2);
IFFT tdsig(&winobj, &mult);

This transforms two inputs (from inobj1 and inobj2), multiplies their spectra and transforms
the result.

while(processing_on) {

inobj1.DoProcess();
inobj2.DoProcess();
spec1.DoProcess();
spec2.DoProcess();
mult.DoProcess();

46

SndObj Library Reference Class FFT

tdsig.DoProcess();
output.Write();

}

The key aspect of FFT (and all spectral processing classes) is that they output spectral
frames, instead of time-domain vectors. Otherwise, their processing behaviour is similar to
other time-domain SndObj classes, producing a new output vector when DoProcess() is
invoked. Classes can be developed to transform this signal, provided that they take and
process a spectral frame packed in the form described above.

47

Class Filter

Description
Filter is the base class for a number of filtering objects in the library. It provides basic methods
to access elements of the filter model. It implements a fixed-frequency and -bandwith
standard second-order band-pass filter. This filter is optimised for fixed filtering applications
and should be used instead of Reson when there is no need for dynamically-variable
parameters

Construction
Filter()
Filter(float fr, float bw, SndObj* InObj, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetFreq(float fr)
void SetBW(float bw)

Messages
[set] “frequency”
[set] “bandwidth”

Details

construction
Filter()
Filter(float fr, float bw, SndObj* InObj, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Filter class. Construction parameters are:

float fr: centre frequency, in Hz.
float bw: bandwidth, in Hz.
SndObj* InObj: input object, pointer to the location of a SndObj-derived object.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetFreq(float fr)
void SetBW(float bw)

These methods set the frequency and bandwidth of a Filter object.

Examples

Filter objects implement basic bandpass filters. The frequency and bandwidth cannot be
modulated by a signal, but they can be set at any tiime. A Filter object is usually created by
passing values for the centre frequency/bandwidth and an input signal object pointer:

Filter bp(1000.f, 10.f, &inobj,);

Here, a signal produced by inobj is filtered by this object with a BW of 10 Hz and a frequency
offset of 1000.f.

48

SndObj Library Reference Class Filter

while(processing_on){

inobj.DoProcess();
bp.DoProcess();
output.Write();

}

49

Class FIR

Description
FIR is a DelayLine-derived object that implements direct convolution of an impulse response
signal with a signal input from a SndObj object. The impulse response (FIR coefficients) can
be given as an array of samples or as a Table object. This is a time-domain process (unlike
Convol) and it can be slow for long impulse responses. At every sample, delayed and scaled
input samples are summed to produce the output.

Construction
FIR()
FIR(Table* coeftable, SndObj* input, int vecsize=DEF_VECSIZE, float sr=DEF_SR)
FIR(float* impulse, int impulsesize, SndObj* input, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

Public Methods
void SetTable(Table* coeftable)
void SetImpulse(float* impulse, int impulsesize)

Messages
[set] “impulse size”
[connect] “impulse”
[connect] “table”

Details

construction
FIR()

The default constructor, parameters set to default values.

FIR(Table* coeftable, SndObj* input, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

This constructor creates a FIR object which will take its impulse response from a Table-
derived object connect to it.

Table *coeftable: a Table-derived object containing the impulse response (the FIR
coefficients).

FIR(float* impulse, int impulsesize, SndObj* input, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

This constructor creates a FIR object that takes an array containing the impulse response and
its size and fills an internal table to use as its impulse response.

float* impulse: an impulse response vector (the FIR coefficients).
int impulsesize: the size of the impulse response.

Both constructors will take the other parameters:

50

SndObj Library Reference Class FIR

SndObj* input: an input SndObj which will generate the signal to be modified.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetTable(Table* coeftable)

This method connects the object to a table object containing the impulse response. It has the
same effect as Connect(“table”, coeftable).

void SetImpulse(float* impulse, int impulsesize)

This method fills an internal table with the impulse response impulse, of size impulsesize. It
has the same effect as calling Set(“impulse size”, impulsesize) followed by
Connect(“impulse”, impulse).

Examples

FIR objects can be constructed with external or internal tables. In terms of efficiency and
elegance, it is advisable to use external tables, which can be connected to multiple FIR
objects, if necessary.

FIR lowpass(&coefobj, &inobj);

This object takes its coefficients from a coefobj object connected to it and processes the input
signal inobj.

while(processin_on){

inobj.DoProcess();
lowpass.DoProcess();
output.Write();

}

51

Class Gain

Description
The Gain class is a simple tool for controlling the amplitude signal of an object. It boosts/cuts
the input signal by a specified amount (in dB or by a multiplier).

Construction
Gain()
Gain(float gain, SndObj* InObj = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetGain(float gain)
void SetGainM(float val)

Messages
“gain”
“gain multiplier”

Details

construction
Gain()
Gain(float gain, SndObj* InObj = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Gain class. Construction parameters are:

float gain: amount of cut/boost in dB (the signal amplitude is doubled/halved every 6dB of
change).
SndObj* InObj: input object, pointer to the location of a SndObj-derived object.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods

void SetGain(float gain)
void SetGainM(float val)

Sets the gain. SetGain() expects the gain in dB, whereas SetGainM() takes a gain multiplier

Examples

The Gain object adjusts the amplitude of a signal, according to its gain setting. The gain
setting is usually defined in the dB scale, according to:

ampinput
ampoutputgaindB _

_log20=

In this case, a gain setting of –6dB will attenuate the input peak amplitude of a signal by
around 0.5. A Gain object constructed to perform this operation will look like this:

52

SndObj Library Reference Class Gain

Gain atten(-6.f, &inObj);

Similarly, if we use the SetGainM() method, we can set the gain to a specific multiplier (in this
case, 0.5):

Gain atten(0.f, &inObj);
atten.SetGainM(0.5f);

A call to Gain::DoProcess() will, as with all SndObjs, process the input sound and output the
attenuated signal.

53

Class HammingTable

Description
The HammingTable class implements a generalised Hamming window, according to
w(n) = α + (1 - α)cos(2π n/N) over -(N-1)/2 <= n <= (N-1)/2.

Construction
HammingTable()
HammingTable(long L, float alpha)

Public Methods
void SetParam(long L, float alpha=.54)

Details

construction
HammingTable()
HammingTable(long L, float alpha)

Constructs a HammingTable object.

long L: table length.
float alpha: the value of the constant α. Alters the shape of the window, 0.54 for
Hamming, 0.5 forHanning window types. Defaults to 0.54.

public methods
void SetParam(long L, float alpha=.54)

Sets the HammingTable parameters. MakeTable() needs to invoked after any parameter
change for table re-building.

54

Class HarmTable

Description
Harmonic function table. Generates four preset types of waveforms: sine, saw, square and
buzz (pulse), with any number of harmonics.

Construction
HarmTable()
HarmTable(long L, int harm, int type, float phase=0.f)

Public Methods
void SetHarm(int harm, int type)
void SetPhase(float phase)

Details

construction
HarmTable()
HarmTable(long L, int harm, int type, float phase=0.f)

Constructs a HarmTable object.

long L: table length.
int harm: number of harmonics. Defaults to 1
int type: preset waveshape. Any of the following: SINE, SAW, SQUARE or BUZZ.

public methods
void SetHarm(int harm, int type)
void SetPhase(float phase)

These methods set the function table parameters. MakeTable() should be invoked after any
parameter resetting.

55

Class Name

Description
Hilb implements a Hilbert Filter Transformer, separating a real signal into real and imaginary
parts. These can be combined to generate a signal without negative frequencies. Useful for
implementing SSB modulators, phase shifters, etc. The real and imaginary outputs are
available as SndObj object pointers.

Construction
Hilb()
Hilb(SndObj* input, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Member Variables
SndObj* real
SndObj* imag

Details

construction
Hilb()
Hilb(SndObj* input, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Hilb class. Construction parameters are:

SndObj* input: pointer to a SndObj object whose signal will be processed by the Hilb object.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public member variables
SndObj* real
SndObj* imag

These member variables are pointers to the output objects containing the real and imaginary
signals. These pointers to a SndObj class should be used when patching the real or
imaginary output of the Hilb class to another object(s) of the library. The Hilb object itself
outputs a signal that is the sum of its real and imaginary outputs.

56

Class HiPass

Description
HiPass models a first-order high-pass IIR filter. It has a gentle slope of –3dB per octave and it
can be used to enhance high frequencies in a sound.

Construction
HiPass()
HiPass(float freq, SndObj *inObj, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
HiPass()
HiPass(float freq, SndObj *inObj, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

The construction parameters are:

float freq: cutoff frequency in Hz of the high-pass filter.
SndObj* inObj: input signal generator, a pointer to SndObj (or derived) object.
int vecsize: the output vector size in samples, defaults to DEF_VECSIZE.
float SR: the sampling rate in Hz, defaults to DEF_SR.

Examples

The HiPass object can be used as a low-frequency attenuator and a high-frequency
emphasiser. Given its gentle slope, its results are not dramatic, but it can be used as an
overall tone control.

HiPass treble(3000.f, &inObj);

The example above shows a HiPass filter with a cutoff frequency of 3000 Hz. A call to
HiPass::DoProcess() will filter the frequencies below that one with a slope of –3dB per
octave.

while(processing_on){

inObj.DoProcess();
treble.DoProcess();
output.Write();

}

57

Class IADSR

Description
This object generates an attack - decay - sustain - release shaped signal at the output, with
initial and end amplitude values. Alternatively, it can similarly shape an input signal, acting as
a modifier. The difference between this class and its parent ADSR is that it expects values for
the initial and end amplitudes, which in the latter case are always 0. This object can be used
to generate envelopes that do not necessarily start and end in 0, such as, a frequency
envelope.

Construction
IADSR()
IADSR(float init, float att, float maxamp, float dec, float sus, float rel, float end, float dur,
SndObj* InObj = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetInit(float init)
void SetEnd(float end)

Messages
[set] “init”
[set] “end”

Details

construction
IADSR()
IADSR(float init, float att, float maxamp, float dec, float sus, float rel, float end, float dur,
SndObj* InObj = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the IADSR class. Construction parameters are:
float init: initial amplitude.
float att: attack time, or rise time, in secs. Time taken for the signal to change from init to
maxamp.
float maxamp: maximum amplitude after rise time. It is a multiplier, in case of the shaping of
an input signal.
float dec: decay time, in secs. Time taken for the signal to change from maxamp to sus.&
float sus: sustain amplitude after decay time. Again, a multiplier, in case of envelope
shaping. The sustain period is calculated on the basis of the difference between the total
duration and the sum of the attack, decay and release times.
float rel: release time, in secs, after the sustain period, during which the signal changes from
sus to end. It is calculated backwards from the end, taken from the total duration of the
envelope.
float end: end amplitude.
float dur: total duration of the envelope, in secs, or the envelope period. This ADSR is
designed to loop, so the whole shape will be repeated after the total duration is completed.
SndObj* InObj: input object, pointer to the location of a SndObj-derived object. Defaults to 0,
which means no input object, so the ADSR object is used as a signal generator.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f

58

SndObj Library Reference Class IADSR

public methods
void SetInit(float init)
void SetEnd(float end)

These methods set the parameters that IADSR adds to the ones inherited from its base class,
ADSR, the initial and the end values.

Examples
IADSR is usually constructed by setting the envelope parameters in the constructor. The
example below creates an IADSR object which will shape the output of a previously declared
object named modulator for a period of 2.5 secs.

IADSR modndx(3.f, .01f, 5.f, .2f, 4.f, .05f, 1.5f, 2.5f, &modulator);

If an object input is not given, IADSR works as signal generator.

59

Class IFAdd

Description
The IFAdd class implements additive resynthesis, based on a cubic interpolation algorithm.
The class takes an input from an IFGram object, which consists of amplitude, frequency and
phase data for each DFT bin. IFAdd objects can resynthesise any number of bins up to
fftsize/2. IFAdd can modify the timescale of the resynthesis by altering the hopsize between
frames and modify the pitch by scaling the frequencies on each hopsize

Construction
IFAdd()
IFAdd(IFGram* input, int bins, Table* table, float pitch=1.f, float scale=1.f,
 float tscale=1.f, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
IFAdd()
IFAdd(IFGram* input, int bins, Table* table, float pitch=1.f, float scale=1.f,
 float tscale=1.f, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct a IFAdd object:

IFGram* input: input object.
int mbins: maximun number of bins to be resynthesised (up to fftsize/2)
Table* table: table object containing a wavetable to be used by each oscillator in the
resynthesis, typically a cosine wave.
float pitch: pitch scaling of output (transposition ratio).
float scale: amplitude scaling of output.
float tscale: timescaling factor, the interpolation(synthesis hopsize):decimation ratio(analysis
hopsize)
int vecsize: object vector size, also determines the synthesis hopsize between analysis
frames (defaults to 256).
float sr: sampling rate in Hz (defaults to 44100).

Examples

The following connections are a simple example of the use of IFAdd to resynthesise an
IFGram analysis signal.

HarmTable table(4000, 1, 1, 0.75); // cosine wave
HammingTable window(fftsize, 0.5); // hanning window

// input sound
SndWave input(infile,READ,1,16,0,0.f,decimation);
SndIn insound(&input, 1, decimation);

// IFD analysis
IFGram ifgram(&window,&insound,1.f,fftsize,decimation);
// IFAdd resynthesis
IFAdd synth(&sinus,bins,&table,pitch,scale,(float) interpolation/decimation,
 interpolation);

// output sound

60

SndObj Library Reference Class IFAdd

SndWave output(outfile, OVERWRITE,1,16,0,0.f,interpolation);
output.SetOutput(1, &synth);

This code takes an input sound, from a file and passes it through the analysis process and
then the data is resynthesised. The timescale change is determined by the
decimation:interpolation ratio. In order to implement processing, the programmer either needs
to write a loop and call the reading/writing and processing methods, or use a SndThread
object, passing these objects to it.

61

Class IFFT

Description
The class IFFT implements the inverse short-time fourier transform (ISTFT). It takes a
spectral-domain signal frame, transforms it into a time-domain signal, applies a window and
overlap-adds the successive transformed frames. It expects an input composed of fftsize
samples, in real fft format, wher e fftsize is the number of frequency points in the transform.
The real parts of the 0Hz and SR/2 frequency points should be packed in positions 0 and 1,
respectively, of the array and should be followed by the complex pairs for the positive side of
the spectrum for all the other frequency points. An IFFT object restores the original signal
analysed using an FFT object. The hopsize is equivalent to the output vector size and should
always be set to power-of-two divisors of the fftsize.

Construction
IFFT()
IFFT(Table* window, SndObj* input, int fftsize=DEF_FFTSIZE, int hopsize=DEF_VECSIZE,
float sr=DEF_SR)

Public Methods
parameter/state access:
int GetFFTSize()
int GetHopSize()

parameter/state setting:
void SetWindow(Table* window)
void SetFFTSize(int fftsize)
void SetHopSize(int hopsize)

Messages
[set] “scale”
[set] “fft size”
[set] “hop size”
[connect] “window”

Details

construction
IFFT()
IFFT(Table* window, SndObj* input, int fftsize=DEF_FFTSIZE, int hopsize=DEF_VECSIZE,
float sr=DEF_SR)

An IFFT object is constructed with the following parameters:

Table* window: pointer to a Table object which describes a window shape to be used in the
resynthesis.
SndObj* input: input spectral object, a pointer to a SndObj (or derived) which produces the
spectral signal to be transformed. Its output vector size should match the fftsize defined for
this object.
int fftsize: the FFT size, the number of frequency points in the transform, which will also
determine the output vector size. Defaults to DEF_FFTSIZE (1024).
int hopsize: the hopsize, or decimation, which determines the number of samples in between
successive FFT input frames. Defaults to DEF_VECSIZE (256).
float sr: the sampling rate for this object. Defaults to DEF_SR (44100.f).

62

SndObj Library Reference Class IFFT

public methods
int GetFFTSize()
int GetHopSize()

These methods retrieve the FFT size and hopsize, which determine the most important
aspects of the inverse transform: the number of frequency points and the decimation.

void SetWindow(Table* window)
void SetFFTSize(int fftsize)
void SetHopSize(int hopsize)

These methods set the parameters that make up an IFFT object. They are usually set before
performance.

Examples

IFFT objects are used to transform a frequency-domain signal into a time-domain signal. The
resulting output is the resynthesis of a series of input spectral frames effected every
hopsize/SR seconds (after a call to IFFT::DoProcess()). The output frames are fftsize
samples long, so the output will be the result of the overlap of fftsize/hopsize signal frames.
The IFFT object is created by passing it a window object and an input object, as in:

IFFT tdsig(&winobj, &mult);

The following example show an application of IFFT to resynthesise a transformed signal:

FFT fdsig(&winobj, &input);
SpecThresh nr(0.1f, &fdsig);
IFFT tdsig(&winobj, &nr);

while(processing_on){

input.DoProcess();
fdsig.DoProcess();
nr.DoProcess();
tdsig.DoProcess();
output.Write();

}

63

Class IFGram

Description
The IFGram class implements Instantaneous Frequency Distribution analysis of a time-
domain signal, plus its magnitude spectrum. Its output is presented in a similar format to the
PVA (phase vocoder) class: with the exception of the first two values, the frequencies (in Hz)
and magnitudes for each analysis channel (or bin). The first value refers to DC magnitude (0
Hz) and the second to the magnitude at the Nyquist frequency. The analysis process is
similar to that of the STFT (FFT class), in that a signal is windowed and scaled. The process
happens at regular intervals, determined by the hopsize, which is equivalent to the time-
domain vectorsize. In addition to the frequencies and amplitudes, it also outputs the current
phases in unwrapped format.

Construction
IFGram()
IFGram(Table* window, SndObj* input, float scale=1, int fftsize=DEF_FFTSIZE,

int hopsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
IFGram()
IFGram(Table* window, SndObj* input, float scale=1, int fftsize=DEF_FFTSIZE, int
hopsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an IFGram object. Its parameters are:

Table* window: pointer to a Table-derived object containing a window shape to be used in the
analysis.
SndObj* input: input signal object (SndObj-derived). Its vector size should match the hopsize
set for this IFGram object.
float scale: scaling factor. The overall scaling, after transformation is scale/N, where N is the
FFT size.
int fftsize: the FFT size, the number of frequency points in the analysis, which will also
determine the output vector size. Defaults to DEF_FFTSIZE (1024).
int hopsize: the hopsize, or decimation, which determines the number of samples in between
successive FFT analysis frames. Defaults to DEF_VECSIZE (256).
float sr: the sampling rate for this object. Defaults to DEF_SR (44100.f).

Examples

IFGram objects are used to transform a time-domain signal into its frequency-domain
representation, containing frequency and amplitude values at a particular time-slice for each
analysis channel. Their output is a sequence of frames, one for each time-slice. The interval
between each time-slice is determined by the hopsize (in samples). The analysis output is
very similar to the one of PVA objects, except that here phases are unwrapped (ie. not limited
to the range of principal values ±π). An IFGram object is constructed by at least passing
pointers to window and input objects to it:

IFGram analysis(&winobj, &inobj);

Its output can be used by any object that takes PVA-format spectral signals, such as
PVMorph:

64

SndObj Library Reference Class IFGram

IFGram analysis1(&winobj, &inobj1);
IFGram analysis2(&winobj, &inobj2);
PVMorph morph(0.5, 0.5, &analysis1, &analysis2);

IFGram can also provide the analysis input to the sinusoidal modelling classes:

IFGram analysis(&window,&insound,1.f,fftsize,decimation);
SinAnal sinus(&analysis,thresh,intracks);
AdSyn synth(&sinus,outracks,&table, pitch,scale,interpolation)

In this example, the variables decimation and interpolation control the timestrech ratio,
whereas pitch and scale control transposition and amplitude scaling, respectively

while(processing _on){
input.Read();
insound.DoProcess();
analysis.DoProcess();
sinus.DoProcess();
synth.DoProcess();
output.Write();
}

See the FFT and PVA classes for more information on spectral analysis classes.

65

Class ImpulseTable

Description
The ImpulseTable object builds an impulse response function table based on a spectral
magnitude envelope and a linear phase response. The envelope is defined by a starting point
and two arrays: (1) segment legnths and (2) end points of each segment. The segments can
be either exponential or linear. An optional window can be applied to the impulse response,
supplied as a table object with the same length. The resulting table will contain the
coefficients for a linear-phase FIR filter with a good approximation of the desired frequency
response.

Construction
ImpulseTable()
ImpulseTable(long L, int segments, float start,
 float* points, float* lengths,float type = 0.f,
 table window=0, float nyquistamp=0.f)

Public Methods
void SetWindow(Table* window)

Details

construction
ImpulseTable()
ImpulseTable(long L, int segments, float start,
 float* points, float* lengths,float type = 0.f, Table* window, float nyquistamp=0.f)

Constructs a ImpulseTable object.

long L: table length.
int segments: number of envelope segments.
float start: starting value of envelope (0 Hz magnitude).
float* points: an array of floats, containing the end values of each segment. Must match the
above number of segments.
float* lengths: an array of floats, containing the lengths of each segment. Must match the
above number of segments. Segment lengths are normalised to the table size (added up and
then each one is divided by that total and multiplied by the table size).
float type: type of curve. Linear = 0, inverse exponential < 0 < exponential.
Table* window: table object of the same length, containing a time-domain window, which will
be used to smooth the impulse response.
float nyquistamp: Nyquist magnitude.

public methods
void SetWindow(Table* window)

This method sets the table object used to smooth the impulse response.

66

Class Interp

Description
This class interpolates between two points during a specified space of time. The interpolation
can be linear, exponential or inverse exponential. Once the final point is reached, the output
will remain at that value if not reset.

Construction
Interp()
Interp(float initial, float final, float dur, float type = 0.f, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

Public Methods
Restart()
void SetDur(float dur)
void SetCurve(float initial, float final, float type = 0.f)

Messages
[set] “initial”
[set] “final”
[set] “duration”
[set] “type”

Details

construction
Interp()
Interp(float initial, float final, float dur, float type = 0.f, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

These methods construct an object of the Interp class. Construction parameters are:

float initial: initial value.
float final: final value.
float dur: total duration of the interpolation process, in seconds.
float type: type of interpolation, linear = 0, exponential < 0 < inverse exponential.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
Restart()

This method resets the object and the output starts again from the first point towards the final
value.

void SetDur(float dur)
void SetCurve(float initial, float final, float type = 0.f)

These methods set the different parameters that make up an Interp object: total duration of
interpolation (in seconds), initial and final values.

67

SndObj Library Reference Class Interp

Examples

Interp objects are used as control functions for all different purposes. For instance an
exponential interpolation between two frequency values can be created as follows:

Interp exp(1.f, 100.f, 150.f, 2.f)l

This can be used to control the frequency of an oscillator:

Oscili osc(&table, 0.f, 1000.f, &exp);

This will generate an exponential glissando between 100 and 150 Hz.

while(processing_on){

exp.DoProcess();
osc.DoProcess();
output.Write();

}

68

Class Lookup

Description
This class performs truncating table lookup controlled by an input SndObj-derived object. The
input signal is used as the index for the lookup procedure. Other parameters are index offset
and input Table-derived object. Lookup can be either by raw table entry (normalisation
mode=RAW_VALUE) or normalised (NORMALISED), which expects signal varying between
0 and 1. If these values lie outside the lookup range, lookup will be either wrapped around
(modulus operation) or limited (kept at the max or min values of the table).

Construction
Lookup()
Lookup(Table* table, long offset, SndObj* InObj, int mode = WRAP_AROUND, int
normal=RAW_VALUE, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void Offset(long offset)
void SetMode(int mode, int normal)
void SetTable(Table* table)

Messages
[set] “read mode”
[set] “index type”
[set] “offset”
[connect] “table”

Details

construction
Lookup()
Lookup(Table* table, long offset, SndObj* InObj, int mode = WRAP_AROUND, int
normal=RAW_VALUE, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Lookup class. Construction parameters are:

Table* table: pointer to the location of a Table-derived object.
long offset: index offset.
SndObj* InObj: input object, pointer to the location of a SndObj-derived object. The output
signal from this object is added to the offset value and then used as the index on the lookup
process.
int mode: lookup mode, either WRAP_AROUND or LIMIT. The first option reads the table
wrapping around, when index falls outside the table size. The second, limits the reading to the
range of 0 < table_length.
int normal: normalisation mode, either RAW_VALUE, where the input signal is taken literally
as raw table indices, or NORMALISED, where the input signal is expected to lie between 0
and 1.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void Offset(long offset)

69

SndObj Library Reference Class Lookup

This method determines the offset amount for the index. It can also be invoked with the
message “offset” passed to Set().

void SetMode(int mode, int normal)

This method sets the read mode (WRAPAROUND or LIMIT) and the normalisation (index
type, RAW_VALUE or NORMALISED). Messages “read mode” and “index type” can be
sent to the object to perform the same operation as this method.

void SetTable(Table* table)

This method connects a table object, which will be used in the lookup operation. The
message “table” can be sent (using Connect()) to the object to perform the same
operation.

Examples

Table lookup is one of the most basic operations in Computer Music. It is used to retrieve
values from tables, for control or signal generation purposes. For instance, a simple
truncating oscillator can be implemented by combining a Phase object (which will provide
an incrementing index) with a table object:

Phase phi(440.f)
Lookup lup(&table, 0.f, &phi, WRAP_AROUND, NORMALISED);

This will generate a signal with a fundamental at 440 Hz.

while(processing_on){

phi.DoProcess();
lup.DoProcess();
output.Write();

}

70

Class Lookupi

Description
This object performs interpolating table Lookupi controlled by an input SndObj-derived object.
It behaves in the same way as its parent class, Lookup.

Construction
Lookupi()
Lookupi(Table* table, long offset, SndObj* InObj, int mode = WRAP_AROUND, int
normal=RAW_VALUE, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
Lookupi()
Lookupi(Table* table, long offset, SndObj* InObj, int mode = WRAP_AROUND, int
normal=RAW_VALUE, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Lookupi class. Construction parameters are:

Table* table: pointer to the location of a Table-derived object.
long offset: index offset.
SndObj* InObj: input object, pointer to the location of a SndObj-derived object. The output
signal from this object is added to the offset value and then used as the index on the Lookupi
process.
int mode: Lookupi mode, either WRAP_AROUND or LIMIT. The first option reads the table
wrapping around, when index falls outside the table size. The second, limits the reading to the
range of 0 < table_length.
int normal: normalisation mode, either RAW_VALUE, where the input signal is taken literally
as raw table indices, or NORMALISED, where the input signal is expected to lie between 0
and 1.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples

Lookupi is simply an interpolating version of Lookup. For non-integral table positions, it
outputs a linearly interpolated value between the two points. Phase modulation synthesis can
be implemented by modulating a phase value with an oscillator signal:

Oscili mod(&sinetable, fm, index);
Phase phi(fc, mod)
Lookupi car(&sinetable, 0.f, &phi, WRAP_AROUND, NORMALISED);

This will generate a PM signal with modulating frequency fm, carrier frequency fc and index of
modulation index.

while(processing_on){
mod.DoProcess();
phi.DoProcess();
car.DoProcess();
output.Write();
}

71

Class LowPass

Description
LoPass models a first-order low-pass IIR filter. It has a gentle slope of –3dB per octave and it
can be used to enhance low frequencies in a sound.

Construction
LoPass()
LoPass(float freq, SndObj *inObj, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
LoPass()
LoPass(float freq, SndObj *inObj, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

The construction parameters are:

float freq: cutoff frequency in Hz of the low-pass filter.
SndObj* inObj: input signal generator, a pointer to SndObj (or derived) object.
int vecsize: the output vector size in samples, defaults to DEF_VECSIZE.
float SR: the sampling rate in Hz, defaults to DEF_SR.

Examples

The LoPass object can be used as a high-frequency attenuator and a low-frequency
emphasiser. Given its gentle slope, its results are not dramatic, but it can be used as an
overall tone control.

LoPass bass(300.f, &inObj);

The example above shows a LoPass filter with a cutoff frequency of 300 Hz. A call to
LoPass::DoProcess() will filter the frequencies above that one with a slope of –3dB per
octave.

while(processing_on){

inObj.DoProcess();
bass.DoProcess();
output.Write();

}

72

Class LoPassTable

Description
This class implements a Table holding an impulse response for a low-pass FIR filter design.

Construction
LoPassTable(int impulsesize, float fr, float sr=44100)
LoPassTable()

Public Methods
void SetFreq(float freq)
void SetSr(float sr)

Details

construction
LoPassTable(int impulsesize, float fr, float sr=44100)
LoPassTable()

Constructs a LoPassTable object.

int impulsesize: size of the impulse response, which will determine the table size.
float fr: cut-off freq of the low-pass filter described by the impulse response.
float sr: sampling rate, in Hz.

public methods
void SetFreq(float freq)
void SetSr(float sr)

These methods set the function table parameters. MakeTable() should be invoked after any
parameter resetting.

73

Class LP

Description
This class implements an analogue-style resonant low-pass filter. The filter frequency and
resonance bandwidth can be either fixed or time-varying.

Construction
Lp()
Lp(float fr, float bw, SndObj* inObj, SndObj* inputfreq = 0, SndObj* inputbw = 0, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
Lp()
Lp(float fr, float bw, SndObj* inObj, SndObj* inputfreq = 0, SndObj* inputbw = 0, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Lp class. Construction parameters are:

float fr: centre frequency offset, in Hz.
float bw: bandwidth offset, in Hz.
SndObj* inObj: pointer to an input SndObj-derived object.
SndObj* inputfreq: frequency control input, pointer to the location of a SndObj-derived object.
The centre frequency can be controlled by a time-varying signal from another SndObj-derived
object. A signal is fed from the input object and added to the frequency offset value. Defaults
to 0, no frequency input object
SndObj* inputbw: bandwidth control input, pointer to the location of a SndObj-derived object.
The bandwidth can be controlled by a time-varying signal from another SndObj-derived
object. A signal is fed from the input object and added to the bandwidth offset value. Defaults
to 0, no bandwidth input object
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples

The LP object can be used as a resonating lowpass filter, which will provide a region of
emphasis around the cutoff frequency. The filter will self-oscillate when the bandwidth of the
resonance region is very small.

LP filter(0.f, 5.f, &inObj, &inFr);

The example above shows a LP filter with its cutoff frequency controlled by an input signal
from inFr, a SndObj-derived object. Its bandwidth is set to 5 Hz.

while(processing_on){

inObj.DoProcess();
inFr.DiProcess();
filter.DoProcess();
output.Write();

}

74

Class MidiMap

Description
This class parses a MIDI input in a similar way to its parent class MidiIn and maps its output
into a user-defined range. The mapping can be done in two ways: using an input map table or
into a specified range. The latter option linearly maps the raw MIDI value in a range between
the maximum and minimum values. The mapping table option requires a Table-derived object
with 128 positions defining the output values for each raw MIDI number.

Construction
MidiMap()
MidiMap(SndMidiIn* input, Table* maptable, short message = NOTE_MESSAGE, short
channel = 1, int vecsize = DEF_VECSIZE, float sr = DEF_SR)
MidiMap(SndMidiIn* input, float min, float max, short message = NOTE_MESSAGE, short
channel = 1, int vecsize = DEF_VECSIZE, float sr = DEF_SR)

Public Methods
void SetTable(Table* maptable)
void SetRange(float min, float max)

Messages
[set] “range min”
[set] “range max”
[connect] “map table”

Details

construction
MidiMap()
MidiMap(SndMidiIn* input, Table* maptable, short message = NOTE_MESSAGE, short
channel = 1, int vecsize = DEF_VECSIZE, float sr = DEF_SR)
MidiMap(SndMidiIn* input, float min, float max, short message = NOTE_MESSAGE, short
channel = 1, int vecsize = DEF_VECSIZE, float sr = DEF_SR)

These methods construct an object of the MidiIn class. The second method is used when
mapping employing a user-defined table and the third is used for linear mapping. Construction
parameters are:

SndMidiIn* input: pointer to the location of a SndMidiIn object.
Table* maptable: pointer to a Table-derived object (size 128) containing the mapping values.
float min: minimum value for linear mapping.
float max maximum value for linear mapping.
short message: type of MIDI channel message which will be output by the object. Valid
values are:

Any control change device number (values 0 - 127)
NOTE_MESSAGE, note on
PBEND_MESSAGE, pitchbend or controller 0
MOD_MESSAGE, modulation wheel (controller 1)
BREATH_MESSAGE, breath control (controller 2)
FOOT_MESSAGE, breath control (controller 4)
PORT_MESSAGE, portamento (controller 5)
VOL_MESSAGE, volume (controller 6)

75

SndObj Library Reference Class MidiMap

BAL_MESSAGE, balance (controller 7)
PAN_MESSAGE , pan (controller 9)
EXPR_MESSAGE, expression (controller 10)
AFTOUCH_MESSAGE, monophonic aftertouch or channel pressure
POLYAFTOUCH_MESSAGE, polyphonic aftertouch
PROGRAM_MESSAGE, program change
VELOCITY_MESSAGE, velocity (from a note message)
NOTEOFF_MESSAGE, note off
Defaults to NOTE_MESSAGE

short channel: MIDI channel from which a message will be read. Defaults to channel 1.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods

This class provides methods for setting the range of the linear mapping, SetRange() and the
“range min”/“range max” set messages, as well as for connecting a user-defined table for
any type of mapping, SetTable() and the “map table” message. Whenever a mapping table
exists and is connected to a MidiMap object, the output mapping will obey this table.
Otherwise, mapping will be linear between the set min and max values .

Examples

MidiMap works in a similar way to its parent class, MidiIn. The only difference is the mapping
of the raw MIDI values into an specific range, or according to a mapping table. The example
below shows the mapping of a MIDI volume input on channel 2 into a linear range to control
the gain of signal. For a mapping table example, please refer to the documentation on the
NoteTable class.

MidiMap vol(&MidiObj, 0.f, 1.f, VOL_MESSAGE, 2);
Ring gain(&inObj, &vol);

The general-purpose ring modulator, which is a simple multiplier is used as gain control,
taking its inputs from InObj and vol.

while(processing_on){

midiObj.Read();
vol.DoProcess();
InObj.DoProcess();
gain.DoProcess();
output.Write();

}

76

Class MidiIn

Description
This class reads one MIDI channel and parses a selected MIDI message from a SndMidiIn
object.

Construction
MidiIn()
MidiIn(SndObj* InObj = 0, short message=NOTE_MESSAGE, short channel=1, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
short SetInput(SndMidiIn* input)
void SetChannel(short channel)
void SetMessage(short message)

Messages
[set] “message type”
[set] “channel”
[connect] “midi input”

Details

construction
MidiIn()
MidiIn(SndObj* InObj = 0, short message=NOTE_MESSAGE, short channel=1, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the MidiIn class. Construction parameters are:

SndMidiIn* input: pointer to the location of a SndMidiIn object.
short message: type of MIDI channel message which will be output by the object. Valid
values are:

Any control change device number (values 0 - 127)
NOTE_MESSAGE, note on
PBEND_MESSAGE, pitchbend or controller 0
MOD_MESSAGE, modulation wheel (controller 1)
BREATH_MESSAGE, breath control (controller 2)
FOOT_MESSAGE, breath control (controller 4)
PORT_MESSAGE, portamento (controller 5)
VOL_MESSAGE, volume (controller 6)
BAL_MESSAGE, balance (controller 7)
PAN_MESSAGE , pan (controller 9)
EXPR_MESSAGE, expression (controller 10)
AFTOUCH_MESSAGE, monophonic aftertouch or channel pressure
POLYAFTOUCH_MESSAGE, polyphonic aftertouch
PROGRAM_MESSAGE, program change
VELOCITY_MESSAGE, velocity (from a note message)
NOTEOFF_MESSAGE, note off
Defaults to NOTE_MESSAGE

short channel: MIDI channel from which a message will be read. Defaults to channel 1.

77

SndObj Library Reference Class MidiIn

int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods

In order to use MidiIn, a SndMidiIn object needs to be connected to it. This can be done by
sending a connect “midi input” message to the object, together with a pointer to the
SndMidiIn object. Alternatively SetInput() can be used. MidiIn also needs to know what
message it is supposed to capture from the MIDI stream, you can use SetMessage() or send
a set “message type” message to it. The constants associated with the different possible
channel messages are shown above. Finally, SetChannel (and associated message) will
define to which MIDI channel this object is listening.

Examples

MidiIn is the simplest class that implements MIDI input parsing in the library. It listens for
specific messages on specific channels, from a SndMidiIn input. Once such a message is
received it keeps outputing its value (in the range 0-127) until a new message is received.
For instance, in the example below, a modulation wheel message on channel 5 is being
parsed:

MidiIn mod(&midiObj, MOD_MESSAGE, 5);

Note that this class only outputs raw MIDI values, which in most cases needs to be scaled or
mapped into a more useful range. Here the raw modulation wheel position is just being used
to control a filter bandwidth:

LP filter(200.f, 1.f, &InObj, 0, &mod);

while(processing_on){

midiObj.Read();
mod.DoProcess();
InObj.DoProcess();
filter.DoProcess();
output.Write();

}

78

Class Mixer

Description
This object mixes together the outputs of any number of SndObj-derived objects and outputs
the mixed signal. The input objects are added to a list which is used to perform the signal
mixing.

Construction
Mixer()
Mixer(int ObjNo, SndObj** InObjs, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
short AddObj(SndObj* InObj)
short DeleteObj(SndObj* InObj)
int GetObjNo()

Messages
[connect] “mix”
[connect] “disconnect”

Details

construction
Mixer()
Mixer(int ObjNo, SndObj** InObjs, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Mixer class. The default constructor has no inputs
assigned to it, so the AddObj() should be used to add objects to the input list. The other
constructor has the following parameters:

int ObjNo: number of pointers to input objects in the array.
SndObj** InObjs: an array of pointers to the locations of SndObj-derived objects.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods

Mixer works with a list of SndObj-derived objects whose output is mixed together. The main
methods used with this object are the ones that add or delete an item to/from the list. The
method AddObj() (and the connect message “mix”) add an object to the list, whereas
DeleteObj() will take that object from the list (as will the connect message “disconnect”).
In addition, the object provide the method GetObjNo() which will return the number of items in
the mix list.

Examples

Usually, Mixer objects are created using their default constructor, as ‘empty’ objects. The mix
list is then created by invoking AddObj(). Alternatively, a mix list could be created as an array
of pointers to SndObj-derived objects and this can be passed to the constructor. The following
is an example of the typical use of Mixer:

79

SndObj Library Reference Class Mixer

Mixer mix;
mix.AddObj(&inObj1);
mix.AddObj(&inObj2);

while(processing_on){

inObj1.DoProcess();
inObj2.DoProcess();
mix.DoProcess();
output.Write();

}

80

Class NoteTable

Description
The NoteTable class implements a conversion table for MIDI note numbers to equal-
tempered frequencies. The user can set the frequency and note intervals, which will be used
as the basis to calculate the equal-tempered conversion scale. The size of the table is set to
128.

Construction
NoteTable()
NoteTable(short lowernote, short uppernote, float lowerfreq, float upperfreq)

Public Methods
void SetNoteInterval(short lowernote, short uppernote)
void SetFreqInterval(float lowerfreq, float upperfreq)

Details

construction
NoteTable()
NoteTable(short lowernote, short uppernote, float lowerfreq, float upperfreq)

Constructs a NoteTable object. It builds a conversion table based on a note interval and a
frequency interval. The latter provides the basic interval to be (logarythmically) subdivided.
The base MIDI note interval provides the tuning reference for the conversion table and the
number of equal steps into which the base frequency interval is subdvided. The table is
extend to comprehend the whole range of MIDI notes (0 -127). The default constructor
creates a 12-note equal-tempered conversion table, with A3 tuned to 440Hz (lowernote = 69,
uppernote = 81, lowerfreq = 440, upperfreq = 880).

short lowernote: lowermost MIDI note of the base interval.
short uppernote: uppermost MIDI note of the base interval.
float lowerfreq: frequency of the lowermost note of the base interval.
float upperfreq: frequency of the uppermost note of the base interval.

public methods
void SetNoteInterval(short lowernote, short uppernote)
void SetFreqInterval(float lowerfreq, float upperfreq)

These methods set the function table parameters. MakeTable() should be invoked after any
parameter resetting.

81

Class Osc

Description
Osc implements a truncating table oscillator which works exclusively with power-of-two size
tables (for other table sizes see class Oscilt). Time-varyng signals can be used to control the
amplitude and frequency of this oscillator.

Construction
Osc()
Osc(Table* table, float fr, float amp, SndObj* inputfr,
 SndObj* inputamp = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetFreq(SndObj* inputfr)
void SetAmp(SndObj* inputamp)

Messages
[connect] “frequency”
[connect] “amplitude”

Details

construction
Osc()
Osc(Table* table, float fr, float amp, SndObj* inputfr,
 SndObj* inputamp = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Osc class. Construction parameters are:

Table* table: pointer to the location of a Table-derived object.
float fr: fundamental frequency offset, in Hz. Initialised to 440 by the default constructor.
float amp: amplitude offset. Initialised to 1.f .
SndObj* inputfr: frequency control input, pointer to the location of a SndObj-derived object.
The fundamental frequency can be controlled by a time-varying signal from another SndObj-
derived object. A signal is fed from the input object and added to the frequency offset value.
Defaults to 0, no frequency input object
SndObj* inputamp: amplitude control input, pointer to the location of a SndObj-derived object.
Defaults to 0, which means no amplitude input object, so the amplitude is fixed to the
amplitude offset value. This is added to the amplitude control input signal when a SndObj-
derived object is patched in.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetFreq(SndObj* inputfr)
void SetAmp(SndObj* inputamp)

These two methods can be invoked to connect an input object to the frequency and amplitude
inputs, respectively. Their functionality is replicated by the connect messages “frequency”
and “amplitude”.

82

SndObj Library Reference Class Osc

Examples

Osc is a simple truncating oscillator, with time-varying amplitude and frequency. The only
restriction it has is that (as with its parent class FastOsc) it requires a power-of-two table, as it
uses integer (instead of floating-point) sampling increments.

HarmTable sinobj(1024, SINE,1);
Osc mod(&sinobj, 4.3f, 8000.f)
Osc car(&sinobj, 100.f, 8000.f, 0, &mod);

The example above shows a simple AM setup, where the Osc object mod is connected to the
amplitude input of the second Osc object, car.

while(processing_on){

mod.DoProcess();
car.DoProcess();
output.Write();

}

83

Class Osci

Description
Osci implements an interpolating table oscillator which works exclusively with power-of-two
size tables (for other table sizes see class Oscili). Time-varyng signals can be used to control
the amplitude and frequency of this oscillator.

Construction
Osci()
Osci(Table* table, float fr, float amp, SndObj* inputfr,
 SndObj* inputamp = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
Osci()
Osci(Table* table, float fr, float amp, SndObj* inputfr,
 SndObj* inputamp = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Osci class. Construction parameters are:

Table* table: pointer to the location of a Table-derived object.
float fr: fundamental frequency offset, in Hz. Initialised to 440 by the default constructor.
float amp: amplitude offset. Initialised to 1.f .
SndObj* inputfr: frequency control input, pointer to the location of a SndObj-derived object.
The fundamental frequency can be controlled by a time-varying signal from another SndObj-
derived object. A signal is fed from the input object and added to the frequency offset value.
Defaults to 0, no frequency input object
SndObj* inputamp: amplitude control input, pointer to the location of a SndObj-derived object.
Defaults to 0, which means no amplitude input object, so the amplitude is fixed to the
amplitude offset value. This is added to the amplitude control input signal when a SndObj-
derived object is patched in.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples

Osci is an interpolating oscillator, with time-varying amplitude and frequency. The only
restriction it has is that (as with its parent class Osc) it requires a power-of-two table, as it
uses integer (instead of floating-point) sampling increments.

HarmTable sinobj(1024, SINE,1);
Osci mod(&sinobj, fm, index*fm)
Osci car(&sinobj, fc, amp, &mod);

The example above shows a simple FM setup, where the Osci object mod, with frequency fm
and amplitude index*fm, is connected to the frequency input of the second Osci object, car.

while(processing_on){
mod.DoProcess();
car.DoProcess();
output.Write();
}

84

Class Oscil
Oscil is a basic (but fast) oscillator, using truncating lookup. Increment can only be positive. It
samples its input signals once every time DoProcess() is called, effectively at a lower SR.
This has two consequences: 1) input objects can be run with a vector size of 1 and a slower
SR (by a factor of 1/vector_size) and 2) the lower SR also makes it awkward to modulate the
amplitude/frequency at audio rates.

Construction
Oscil()
Oscil(Table* table, float fr=440.f, float amp=1.f, SndObj* inputfreq = 0, SndObj* inputamp =
0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetFreq(float fr, SndObj* inputfreq = 0)
void SetAmp(float amp, SndObj* inputamp = 0)
void SetFreq(SndObj* inputfreq = 0)
void SetAmp(SndObj* inputamp = 0)
void SetPhase(float phase)
void SetTable(Table* table)

Messages
[set, connect] “frequency”
[set, connect] “amplitude”
[set] “phase”
[connect] “table”

Details

construction
Oscil()
Oscil(Table* table, float fr=440.f, float amp=1.f, SndObj* inputfreq = 0, SndObj* inputamp =
0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Oscil class. Construction parameters are:

Table* table: pointer to the location of a Table-derived object.
float fr: fundamental frequency offset, in Hz. Initialised to 440 by the default constructor.
float amp: amplitude offset. Initialised to 1.f .
SndObj* inputfr: frequency control input, pointer to the location of a SndObj-derived object.
The fundamental frequency can be controlled by a time-varying signal from another SndObj-
derived object. A signal is fed from the input object and added to the frequency offset value.
Defaults to 0, no frequency input object
SndObj* inputamp: amplitude control input, pointer to the location of a SndObj-derived object.
Defaults to 0, which means no amplitude input object, so the amplitude is fixed to the
amplitude offset value. This is added to the amplitude control input signal when a SndObj-
derived object is patched in.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetFreq(float fr, SndObj* inputfreq = 0)
void SetAmp(float amp, SndObj* inputamp = 0)
void SetFreq(SndObj* inputfreq = 0)

85

SndObj Library Reference Class Oscil

void SetAmp(SndObj* inputamp = 0)
void SetPhase(float phase)
void SetTable(Table* table)

These methods set the parameters that make up a Oscil object. Frequency is set in Hz,
amplitude is arbitrary (it depends on the scaling/precision used) and the phase is in fractions
of a cycle (0-1.0). The input frequency and amplitude objects can also be connected to this
object using SetFreq() and SetAmp() respectively. SetTable() connects a table object to this
oscillator.

Examples

Oscil can be used to generate any type of periodic (and one-shot) signals. One typical use is
to generate a pitched signal by scanning a table containing a certain wave shape. Any size
table can be used.

HarmTable sinobj(2500, SINE,1);
Oscil oscilla(&sinobj, 100.f, 16000.f);

The example above shows an object named oscilla which is connected to a table object
sinobj. The object will generate a sinewave signal with 100Hz frequency and amplitude
16000.f (ca. –6dB in 16-bit):

while(processing_on){

oscilla.DoProcess();
output.Write();

}

86

Class Oscili
Oscili is an interpolating oscillator, derived from Oscil, providing full audio rate modulation
capabilities.

Construction
Oscili()
Oscili(Table* table, float fr=440.f, float amp=1.f, SndObj* inputfreq = 0, SndObj* inputamp =
0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
Oscili()
Oscili(Table* table, float fr=440.f, float amp=1.f, SndObj* inputfreq = 0, SndObj* inputamp =
0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Oscili class. Construction parameters are:

Table* table: pointer to the location of a Table-derived object.
float fr: fundamental frequency offset, in Hz. Initialised to 440 by the default constructor.
float amp: amplitude offset. Initialised to 1.f .
SndObj* inputfr: frequency control input, pointer to the location of a SndObj-derived object.
The fundamental frequency can be controlled by a time-varying signal from another SndObj-
derived object. A signal is fed from the input object and added to the frequency offset value.
Defaults to 0, no frequency input object
SndObj* inputamp: amplitude control input, pointer to the location of a SndObj-derived object.
Defaults to 0, which means no amplitude input object, so the amplitude is fixed to the
amplitude offset value. This is added to the amplitude control input signal when a SndObj-
derived object is patched in.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples

Oscili is an interpolating oscillator, with time-varying amplitude and frequency.

HarmTable sinobj(2500, SINE,1);
Oscili mod(&sinobj, fm, index*fm)
Oscili car(&sinobj, fc, amp, &mod);

The example above shows a simple FM setup, where the Osci object mod, with frequency fm
and amplitude index*fm, is connected to the frequency input of the second Osci object, car.

while(processing_on){
mod.DoProcess();
car.DoProcess();
output.Write();
}

87

Class Oscilt
Oscilt is an interpolating oscillator, derived from Oscil, providing full audio rate modulation
capabilities.

Construction
Oscilt()
Oscilt(Table* table, float fr=440.f, float amp=1.f, SndObj* inputfreq = 0, SndObj* inputamp =
0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
Oscilt()
Oscilt(Table* table, float fr=440.f, float amp=1.f, SndObj* inputfreq = 0, SndObj* inputamp =
0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Oscilt class. Construction parameters are:

Table* table: pointer to the location of a Table-derived object.
float fr: fundamental frequency offset, in Hz. Initialised to 440 by the default constructor.
float amp: amplitude offset. Initialised to 1.f .
SndObj* inputfr: frequency control input, pointer to the location of a SndObj-derived object.
The fundamental frequency can be controlled by a time-varying signal from another SndObj-
derived object. A signal is fed from the input object and added to the frequency offset value.
Defaults to 0, no frequency input object
SndObj* inputamp: amplitude control input, pointer to the location of a SndObj-derived object.
Defaults to 0, which means no amplitude input object, so the amplitude is fixed to the
amplitude offset value. This is added to the amplitude control input signal when a SndObj-
derived object is patched in.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples

Oscilt is a simple truncating oscillator, with time-varying amplitude and frequency.

HarmTable sinobj(1024, SINE,1);
Osc mod(&sinobj, 150.f, 8000.f)
Osc car(&sinobj, 270.f, 8000.f, 0, &mod);

The example above shows a simple audio-rate AM setup, where the Oscil object mod is
connected to the amplitude input of the second Oscil object, car.

while(processing_on){

mod.DoProcess();
car.DoProcess();
output.Write();

}

88

Class Pan

Description
The Pan object pans an input signal between two channels. The stereo output of this object is
made available in the form of two pointers to a SndObj class, by the public member variables
left and right

Construction
Pan()
Pan(float pan, SndObj* InObj, SndObj* InPan = 0, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

Public Members
SndObj* right
SndObj* left

Public Methods
void SetPan(float pan, SndObj* InPan=0)

Messages
[set, connect] “pan position”

Details

construction
Pan()
Pan(float pan, SndObj* InObj, SndObj* InPan = 0, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

These methods construct an object of the Pan class. Construction parameters are:

float pan: pan position offset, -1 means hard left and +1, hard right.
SndObj* InObj: input object, pointer to the location of a SndObj-derived object.
SndObj* InPan: variable pan input object, pointer to the location of a SndObj-derived object.
A signal varying between -1 and 1 will move the sound between the two speakers.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public members
SndObj* right
SndObj* left

These are pointers to the two output objects generated by pan. They are used to obtain the
signal for the two output channels, right and left.

public methods
void SetPan(float pan, SndObj* InPan=0)

This method (and the message “pan position”) can be used to set the fixed pan offset value
and/or the variable pan input signal object.

89

SndObj Library Reference Class Pan

Examples

Pan generates a two-channel signal out of a single-channel input. The relative amplitudes of
the channels are determined by the pan position:

Pan panpot(0.5, &inObj);

The example above shows a signal being panned halfway between the centre and the right
speaker on a normal stereo set-up. The two signals, left and right are obtained as two SndObj
pointers:

output.SetOutput(0, panpot.left);
output.SetOutput(1. panpot.right);

while(processing_on){

inObj.DoProcess();
panpot.DoProcess();
output.Write();

}

90

Class Phase

Description
The Phase class implements a phase accumulator, aka phasor. It generates a constantly
moving phase value between 0 and 1, according to its frequency.

Construction
Phase()
Phase(float freq, SndObj* FreqInput = 0 , float offset = 0.f ,int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

Public Methods
void SetFreq(float freq, SndObj* FreqInput = 0)
void SetPhase(float offset)

Messages
[set, connect] “frequency”
[set] “phase”

Details

construction
Phase()
Phase(float freq, SndObj* FreqInput = 0 , float offset = 0.f ,int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

These methods construct an object of the Phase class. Construction parameters are:

float freq: phasor frequency, in Hz.
SndObj* FreqInput: pointer to a SndObj object, whose signal will be used to control the
phasor frequency.
float offset: initial phase, in fractions of a cycle (0-1.0).
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetFreq(float freq, SndObj* FreqInput = 0)
void SetPhase(float offset)

These methods can be used to set the fixed frequency and phase offset value or to connect
an input frequency signal object.

Examples

A Phase object simply generates a moving phase between 0 and 1:

Phase phi(440.f);
Lookup sig(&sinetable, 0.f, &phi, WRAP_AROUND, NORMALISED);

The example above shows a Phase object used to implement a truncating lookup oscillator, in
conjuction with a table reader.

91

SndObj Library Reference Class Phase

while(processing_on){

phi.DoProcess();
sig.DoProcess();
output.Write();

}

92

Class PhOscili

Description
PhOscili is an inteprolating oscillator with a variable phase increment input, enabling phase
modulation. This class was written by Frank Barknecht.

Construction
PhOscili()
PhOscili(Table* table, float fr=440.f, float amp=1.f, SndObj* inputfreq = 0, SndObj*
inputamp = 0, SndObj* inputphase = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Messages
[set, connect] “phase”

Details

construction
PhOscili()
PhOscili(Table* table, float fr=440.f, float amp=1.f, SndObj* inputfreq = 0, SndObj*
inputamp = 0, SndObj* inputphase = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the PhOscili class. Construction parameters are:

Table* table: pointer to the location of a Table-derived object.
float fr: fundamental frequency offset, in Hz. Initialised to 440 by the default constructor.
float amp: amplitude offset. Initialised to 1.f .
SndObj* inputfr: frequency control input, pointer to the location of a SndObj-derived object.
The fundamental frequency can be controlled by a time-varying signal from another SndObj-
derived object. A signal is fed from the input object and added to the frequency offset value.
Defaults to 0, no frequency input object
SndObj* inputamp: amplitude control input, pointer to the location of a SndObj-derived object.
Defaults to 0, which means no amplitude input object, so the amplitude is fixed to the
amplitude offset value. This is added to the amplitude control input signal when a SndObj-
derived object is patched in.
SndObj* inputphase phase increment control input, pointer to the location of a SndObj-
derived object. Defaults to 0, which means no phase input object. The expected phase signal
should be in the range of –1 to 1, ie. fractions of a full cycle.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples

PhOscili can be used to generate any type of periodic (and one-shot) signals, in addition it
enables phase modulation (PM).

HarmTable sinobj(2500, SINE,1);
Oscili mod(&sinobj, fm, index);
PhOscili car(&sinobj, fc, amp, 0, 0, &mod);

The example above shows a typical PM set-up, where a modulating oscillator signal is
inserted into the carrier phase signal.

93

SndObj Library Reference Class PhOscili

while(processing_on){

mod.DoProcess();
car.DoProcess();
output.Write();

}

94

Class Pitch

Description
This object implements a delayline-based pitch transposer. It provides methods for setting the
pitch both as equal-tempered semitones or as frequency ratios.

Construction
Pitch()
Pitch(float delaytime, SndObj* InObj, float pitch = 1.f, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)
Pitch(float delaytime, SndObj* InObj, int semitones = 0, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

Public Methods
void SetPitch(float pitch)
void SetPitch(int semitones)

Messages
[set] “multiplier”
[set] “semitones”

Details

construction
Pitch()
Pitch(float delaytime, SndObj* InObj, float pitch = 1.f, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)
Pitch(float delaytime, SndObj* InObj, int semitones = 0, int vecsize=DEF_VECSIZE, float
sr=DEF_SR)

These methods construct an object of the Pitch class. Construction parameters are:

float delaytime: max delay time of the buffer, in seconds (normally 0.1)
SndObj* InObj: input object, pointer to the location of a SndObj-derived object. The output
signal from this object is added to the offset value and then used as the index on the lookup
process.
float pitch: pitch transposition ratio.
int semitones: pitch transposition in semitones.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetPitch(float pitch)
void SetPitch(int semitones)

These two methods are used to adjust the output pitch, either as a frequency ratio (mulitplier)
or as a semitone value. The two set messages, “multiplier” and “semitones” can also be
sent to the object to change the pitch according to a frequency ratio or equal-tempered
semitones, respectively.

95

SndObj Library Reference Class Pitch

Examples

Pitch is basically a variable-delay delayline, where the relative speeds of the read pointer in
relation to the write pointer determines the amount of pitch transposition. In order to avoid
echo-like effects, the delay is kept to around 0.1 secs. Shorter delay times might cause
audible aliasing effects when transposition ratios are large.

Pitch transpo(0.1f, &inObj, 1.5f);

The example above transposes the input signal to a perfect fifth above the original, whereas

Pitch transpo(0.1f, &inObj, 7);

transposes the signal to a perfect equal-tempered fifth (7 semitones, 1.498 times) above.

while(processing_on){

inObj.DoProcess();
transpo.DoProcess();
output.Write();

}

96

Class PlnTable

Description
The HammingTable class draws a polynomial of any order, centred on 0, over a specified
range.

Construction
PlnTable()
PlnTable(long L, int order, double* coefs, float range=1.f)

Public Methods
void SetPln(int order, double* coefs, float range=1.f)

Details

construction
PlnTable()
PlnTable(long L, int order, double* coefs, float range=1.f)

Constructs a PlnTable object.

long L: table length.
int order: order of the polynomial.
double* coefs: pointer to the first location of a an array of double-precision floats containing
the polynomial coeficients.
float range: range of the polynomial, interval over which it will be drawn. Defaults to 1.

public methods
void SetPln(int order, double* coefs, float range=1.f)

This method sets the function table parameters. MakeTable() should be invoked after any
parameter resetting.

97

Class Pluck

Description
The Pluck object is a plucked-string sound generator, based on the Karplus-Strong model. It
takes parameters for frequency (offset and freq. control object), amplitude, feedback
gain/decay factor, sampling rate and maxscale (max positive amplitude value in the system).
The "string" is "plucked" when DoProcess() is called for the first time after construction and it
will be replucked after calls to SetAmp() or RePluck().

Construction
Pluck()
Pluck(float fr, float amp, float fdbgain, SndObj* InFrObj = 0,float maxscale=32767.f, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)
Pluck(float fr, float amp, SndObj* InFrObj = 0, float decay=20.f, float maxscale=32767.f, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetAmp(float amp, float maxscale=32767)
void RePluck();

Messages
[set] “amplitude”
[set] “maxscale”
[set] “repluck”

Details

construction
Pluck()
Pluck(float fr, float amp, float fdbgain, SndObj* InFrObj = 0,float maxscale=32767.f, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)
Pluck(float fr, float amp, SndObj* InFrObj = 0, float decay=20.f, float maxscale=32767.f, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Pluck class. Construction parameters are:

float fr: frequency offset, in Hz. Defaults to 440 Hz.
float amp: amplitude of the noise signal which will fill the delay line. Defaults to 1.0 .
float fdbgain: gain factor of the internal comb filter, which will rescale the signal before it re-
enters the delay line. Normally < 1, anything over 1 will cause the signal to continually grow,
with possibly disastrous results. Defaults to 0.9 .
float decay: alternatively, the third constructor constructs an object whose decay factor can
be directly controlled. The decay factor is given in dB/sec. This allows for stretching as well as
shortening the decay, as well as maintaining the same decay time across all frequencies.
SndObj* InFrObj: frequency control input, pointer to the location of a SndObj-derived object.
The fundamental frequency can be controlled by a time-varying signal from another SndObj-
derived object. A signal is fed from the input object and added to the frequency offset value.
Defaults to 0, no frequency input object
float maxscale: max positive amplitude possible in the system, 32767.f for 16-bit audio.
Defaults to 32767.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

98

SndObj Library Reference Class Pluck

public methods
void SetAmp(float amp, float maxscale=32767)
void RePluck();

These methods set the parameters of a Pluck object, the amplitude, the maximum scale
(which is the max positive amplitude value used by the system), as well as setting it to be
plucked again. The respective set messages for these actions are “amplitude”, “maxscale”
and “repluck” (this one ignores the message argument, as it does not have a use for it).

Examples

Pluck is basically a string-sound generator. The parameters used to control its sound are
amplitude, frequency and feedback gain. The first two are self-explanatory, the last one
basically controls how the modelled string wave bounces off the ends of the string, so it
affects the decay time of the sound. Values are usually set above 0.9 and below 1, the lower
frequencies tend to have a slower decay time than the higher ones.

Pluck string(220.f, 10000.f, 0.95f);

The above example creates a Pluck object with a fundamental at 220 Hz. When
Pluck::DoProcess() is called for the first time, the string will be plucked and its sound will
decay until the RePluck() or SetAmp() methods (or associated messages) are invoked.

while(processing_on){

string.DoProcess();
output.Write();

}

99

Class PVA

Description
The PVA class provides the mechanism for Phase Vocoder Analysis. It takes a time-domain
signal and transforms it into a sequence of frequency-domain frames, each one containing
N/2 pairs of values, where N is the FFT framesize. Each frame corresponds to a time point in
the original signal that is hopsize samples ahead of the previous frame. Except for the first
pair of values, all bins will contain the measured amplitude (magnitude) and frequency (in Hz)
of each analysis band. The first pair of values will contain only the amplitudes of the 0Hz and
Nyquist components, respectively, of the signal. As with its parent class, FFT, the limitations
for hopsize and fftsize are as follows: (a) the hopsize has to match the time-domain vector
size used by the input object (b) the FFT size has to be a power-of-two multiple of the
hopsize. As a consequence of this FFT objects (and other spectral processing objects) can be
freely combined with time-domain objects in the same processing loop (and within a
SndThread object). The FFT size determines the size of the output vector and the hopsize the
time interval (in samples) between successive FFT frames.

Construction
PVA()
PVA(Table* window, SndObj* input, float scale=1.f, int fftsize=DEF_FFTSIZE, int
hopsize=DEF_VECSIZE, float m_sr=DEF_SR)

Public Methods
float Outphases(int pos)

Details

construction
PVA()
PVA(Table* window, SndObj* input, float scale=1.f, int fftsize=DEF_FFTSIZE, int
hopsize=DEF_VECSIZE, float m_sr=DEF_SR)

These methods construct a PVA object. Its parameters are:

Table* window: pointer to a Table-derived object containing a window shape to be used in the
analysis.
SndObj* input: input signal object (SndObj-derived). Its vector size should match the hopsize
set for this PVA object.
float scale: scaling factor. The overall scaling, after transformation is scale/N, where N is the
FFT size.
int fftsize: the FFT size, the number of frequency points in the analysis, which will also
determine the output vector size. Defaults to DEF_FFTSIZE (1024).
int hopsize: the hopsize, or decimation, which determines the number of samples in between
successive FFT analysis frames. Defaults to DEF_VECSIZE (256).
float sr: the sampling rate for this object. Defaults to DEF_SR (44100.f).

public methods
float Outphases(int pos)

This method provides access to the phase value for each bin, indexed from the 0 Hz bin up
to, but not including, the Nyquist. Since the 0 Hz and Nyquist frequencies are always purely
real, their phase information is irrelevant. Also note that the phase value output by this
method is the one used to obtain the phase difference used to estimate the bin frequency
value. As such, as a rotation process is applied to the analysed signal prior to the transform,

100

SndObj Library Reference Class PVA

this value will be different to that obtained from a straightforward FFT followed by a cartesian-
to-polar conversion. The single argument to the method is the bin number, which will
correspond to the desired analysis frequency band.

Examples

PVA objects are used to transform a time-domain signal into a frequency-domain signal. The
resulting output is a series of spectral frames generated every hopsize/SR seconds (after a
call to PVA::DoProcess()). These frames will contain fftsize/2 + 1 frequency points between 0
and SR/2 (inclusive). With the exception of 0 and SR/2 Hz, each frequency point is a pair of
values containg the amplitude and frequecny values for that frequency band. In order to fit all
points in a single fftsize vector, the real parts of the 0 and SR/2 Hz points are packed together
in the first two positions of the array.

PVA analysis(&winobj, &inobj);

Its output can be further transformed by a spectral processing object and the result can be
then transformed back into the time-domain (using IFFT). The example below multiplies two
spectra:

PVA spec1(&winobj, &inobj1);
PVA spec2(&winobj, &inobj2);
PVMorph mph(0.5f, 0.5f,&spec1, &spec2);
PVS tdsig(&winobj, &mph);

This transforms two inputs (from inobj1 and inobj2), morphs their frequency/amplitude spectra
at 50% and resynthesises it.

while(processing_on) {

inobj1.DoProcess();
inobj2.DoProcess();
spec1.DoProcess();
spec2.DoProcess();
mph.DoProcess();
tdsig.DoProcess();
output.Write();

}

See the FFT class for more information on spectral analysis classes.

101

Class PVBlur

Description
This class implements time blurring of PV data. It takes an input from a PV-data generating
SndObj and blurs its amplitude/frequency values on a channel-per-channel basis. The main
parameter is the blurring time or period, in seconds. Because blurring depends on accessing
successive PV frames, there is a time delay involved, which is equivalent to the blurring
period.

Construction
PVBlur()
PVBlur(SndObj* input, float blurtime, int hopsize=DEF_VECSIZE, int

vecsize=DEF_FFTSIZE, float sr=DEF_SR)

Details

construction
PVBlur()
PVBlur(SndObj* input, float blurtime, int hopsize=DEF_VECSIZE, int

vecsize=DEF_FFTSIZE, float sr=DEF_SR)

These methods construct a PVBlur object:

SndObj* input: spectral SndObj, generating a PV-format signal.
float blurtime: the blurring period in seconds.
int hopsize: the original analysis hopsize, used to calculate the number of blurred frames.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples
PVBlur can be used for sound transformation applications, its effect is that of a time-smearing
of amps and freqs. In realtime operation, it is important to note that there is also an extra
delay between input and output, equivalent to the blurring period. The example below
implements blurring of an input signal.

SndRTIO input(1, SND_INPUT);
SndRTIO output(1, SND_OUTPUT);

 HammingTable window(1024, 0.54f);

 SndIn in(&input);
 PVA anal(&window, &in);
 PVBlur blur(&anal, pitch);
 PVS synth(&window, &blur);

 output.SetOutput(1, &synth);

Here’s a processing loop for it:

 for(int i=0; i<end; i++){
 input.Read();
 in.DoProcess();

102

SndObj Library Reference Class PVBlur

 anal.DoProcess();
 blur.DoProcess();
 synth.DoProcess();
 output.Write();
}

103

Class PVEnvTable

Description
The PVEnvTable object builds a function table based on a spectral magnitude envelope. The
envelope is defined by a starting point and two arrays: (1) segment legnths and (2) end points
of each segment. The segments can be either exponential or linear. The table will contain a
spectrum consisting of magnitude, frequency pairs for each positive DFT point, except for the
0Hz and Nyquist points, which are magnitude-only. Table sizes also determine the DFT size
used and generally are set to a power-of-two value. The spectal table data format is the same
employed by the SndObj spectral (PV) classes: 0Hz and Nyquist points, followed by all other
spectral points from 1 to N/2 –1. The frequency values are set to bin centre frequencies. The
table values are not normalised.

Construction
PVEnvTable()
PVEnvTable(long L, int segments, float start,
 float* points, float* lengths,float type = 0.f,
 float phi=0.f, float sr=44100.f,float nyquistamp=0.f)

Public Methods
void SetEnvelope(int segments, float start, float* points, float* lengths,
 loat type, float nyquistamp)
void SetSr(float sr)

Details

construction
PVEnvTable()
PVEnvTable(long L, int segments, float start,
 float* points, float* lengths,float type = 0.f,
 float sr=44100.f,float nyquistamp=0.f)

Constructs a PVEnvTable object.

long L: table length.
int segments: number of envelope segments.
float start: starting value of envelope (0 Hz magnitude).
float* points: an array of floats, containing the end values of each segment. Must match the
above number of segments.
float* lengths: an array of floats, containing the lengths of each segment. Must match the
above number of segments. Segment lengths are normalised to the table size (added up and
then each one is divided by that total and multiplied by the table size).
float type: type of curve. Linear = 0, inverse exponential < 0 < exponential.
float sr: sampling rate.
float nyquistamp: Nyquist magnitude.

public methods
void SetEnvelope(int segments, float start, float* points, float* lengths,
 loat type, float nyquistamp)

This method sets the envelope parameters. MakeTable() is invoked by this method.

void SetSr(float sr)

104

SndObj Library Reference Class PVEnvTable

This method sets the sampling rate and writes the frequency values of each spectral point.

Class PVMask

Description
PVMask takes a PV input and alter its amplitudes, on a per-channel basis, depending on a
masking magnitude spectrum of another input or a table. The masking operation compares
the amplitudes of the input with that of the masking spectral signal, if the input falls below the
spectral signal, then the amplitude is scaled by a masking gain value. When the scaling value
is 0, the masking is complete and all channels with less energy than the masking signal
channels are eliminated. When the scaling is above 1, then all components of the mask that
are stronger than the input signal will impose their amplitudes on that signal. The scaling
value can be modulated by an input signal. The masking spectrum can be either fixed (stored
in an fftsize-sized table in the PV format) or time-varying (from an input SndObj). Input
frequencies are untouched.

Construction
PVMask()
PVMask(float maskgain, SndObj* input, SndObj* mask,
 SndObj* inmaskgobj=0, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)
PVMask(float maskgain, Table* masktable, SndObj* input,
 SndObj* inmaskgobj=0, int vecsize=DEF_FFTSIZE,

float sr=DEF_SR)

Public Methods
void SetMaskInput(SndObj* mask)
void SetMaskTable(Table *mask)
void SetMaskGain(float maskgain, SndObj* inmaskg=0)

Messages
[set, connect] “mask gain”
[connect] “mask input”
[connect] “mask table”

Details

construction
PVMask()
PVMask(float maskgain, SndObj* input, SndObj* mask,
 SndObj* inmaskgobj=0, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)
PVMask(float maskgain, Table* masktable, SndObj* input,
 SndObj* inmaskgobj=0, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)

These methods construct a PVMask object:

float maskgain: gain value offset, used to scale the amplitudes of input channels which are
lower than the mask signal amplitudes.
SndObj* input: input signal object, whose signal is in the PV (amp, freq) spectral format.
SndObj* mask: masking signal object, with an output in the same format as above.

105

SndObj Library Reference Class PVMask

Table* masktable: masking table object, containing a table of vecsize length, with a single
spectral frame in the PV format.
SndObj* inmaskgobj: mask gain signal input object, whose output will be used (in addition to
maskgain) as the masking scale value.
int vecsize: signal vector size, equivalent to the FFT window size of the spectral signal.
float sr: sampling rate in Hz.

public methods
void SetMaskInput(SndObj* mask)
void SetMaskTable(Table *mask)
void SetMaskGain(float maskgain, SndObj* inmaskg=0)

These methods set the various parameters of the PVMask object. The object will take its
masking input either from a Table object, if one is set or from an input SndObj. The latest call
to either setting method (or Connect() with the appropriate message) will determine the
masking input source.

Examples
PVMask can be used for all sorts of masking applications. One typical use is to have a noise
mask source and then use PVMask to extract that noise from the input signal. For instance:

PVA spec(&window, &inobj);
PVMask clean(0.f, &noisetable, &spec);
PVS synth(&window, &clean);

The above SndObj connections will take an input signal and apply a noisemask (stored in
noisetable). The masking can also be time-varying, so if we use an input spectral object, we
can perform such operations. The scaling gain can also be used to boost the masking
amplitudes found in the input signal, if it is set above 1.

106

Class PVMix

Description
This class implements seamless mixing of PV data. It takes two inputs from a PV-data
generating SndObjs and mixes the two by taking only the loudest channels of the two inputs.

Construction
PVMix()
PVMix(SndObj* input, SndObj* input2, int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

Details

construction
PVMix()
PVMix(SndObj* input, SndObj* input2nt vecsize=DEF_FFTSIZE, float sr=DEF_SR)

These methods construct a PVMix object:

SndObj* input, input2: spectral SndObjs, generating a PV-format signal.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples
PVMix can be used for mixing applications, where the output mix will contain only the louder
of the two signals for each input PV channel. The example below implements a harmoniser,
mixing a transposed signal with its source.

SndRTIO input(1, SND_INPUT);
SndRTIO output(1, SND_OUTPUT);

 HammingTable window(1024, 0.54f);

 SndIn in(&input);
 PVA anal(&window, &in);
 PVTrans trans(&anal, pitch);
 PVMix mix(&trans, &anal);
 PVS synth(&window, &mix);

 output.SetOutput(1, &synth);

The above chain of SndObjs sets up a transposer whose output is mixed to its input (dry)
signal. Here’s a processing loop for it:

 for(int i=0; i<end; i++){
 input.Read();
 in.DoProcess();
 anal.DoProcess();
 trans.DoProcess();
 mix.DoProcess();
 synth.DoProcess();
 output.Write();
}

107

Class PVMorph

Description
PVMorph implements phase vocoder data interpolation. It takes two inputs from SndObj
objects that output PV data (in the same format as PVA or IFGram) and interpolates
frequencies and amplitudes individually. The realism of the actual morphing effect will depend
very much on the qualities of the input spectra.

Construction
PVMorph()
PVMorph(float morphfr, float morpha, SndObj* input1, SndObj* input2,
 SndObj* inmorphfr=0, SndObj* inmorpha=0, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)

Public Methods
void SetFreqMorph(float morphfr, SndObj* inmorphfr=0)
void SetAmpMorph(float morpha, SndObj* inmorpha=0)

Messages
[set, connect] “amplitude morph”
[set, connect] “frequency morph”

Details

construction
PVMorph()
PVMorph(float morphfr, float morpha, SndObj* input1, SndObj* input2,
 SndObj* inmorphfr=0, SndObj* inmorpha=0, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)

These two methods construct a PVMorph object. Construction parameters are:

float morphfr: frequency interpolation offset, 0 takes all frequency values from input1 and 1
takes all frequency values from input2. Values in between determine the amount of frequency
interpolation of the two sources.
float morpha: as above, but affecting the interpolation of amplitudes.
SndObj* input1: first input spectral object. Its output should be in the PVA/IFGram format
(amplitude and frequency pairs, with the first pair holding the amplitude only of the 0Hz and
Nyquist components).
SndObj* input2: second input spectral object, as above.
SndObj* inmorphfr: SndObj-derived object whose output will control the frequency morphing
amount (offset by morphfr). Values above 1 or below 0 will be clipped.
SndObj* inmorphamp: SndObj-derived object whose output will control the ampltiude
morphing amount, similarly to above.
int vecsize: signal vectorsize, effectively the fft window length (defaults to 1024).
float sr: sampling rate in Hz (defaults to 44100).

public methods

void SetFreqMorph(float morphfr, SndObj* inmorphfr=0)
void SetAmpMorph(float morpha, SndObj* inmorpha=0)

108

SndObj Library Reference Class PVMorph

These two methods are used to set the frequency/amplitude interpolation parameters. These
parameters can also be accessed through Set()/Connect() using the messages listed above.

Examples

The code examples below shows how a simple morphing unit generator can be built for Pure
Data (the complete file is distributed in the /src/examples directory).

The constructor for the PD class would include the following SndObj code:

void *morph_tilde_new(t_symbol *s, int argc, t_atom *argv)
{
(...)
x->window = new HammingTable(1024, 0.5);
x->inobj1 = new SndObj(0, DEF_VECSIZE, sr);
x->inobj2 = new SndObj(0, DEF_VECSIZE, sr);
x->spec1 = new PVA(x->window, x->inobj1, 1.f, DEF_FFTSIZE,
 DEF_VECSIZE, sr);
x->spec2 = new PVA(x->window, x->inobj2, 1.f, DEF_FFTSIZE,
 DEF_VECSIZE, sr);
x->morph = new PVMorph(morphfr, morpha, x->spec1, x->spec2,
 0,0,DEF_FFTSIZE, sr);
x->synth = new PVS(x->window, x->morph, DEF_FFTSIZE,
 DEF_VECSIZE, sr);
(...)
}

The PD class perform method would look like this:

t_int *morph_tilde_perform(int *w){
 t_sample *in1 = (t_sample*) w[1];
 t_sample *in2 = (t_sample*) w[2];
 t_sample *out = (t_sample*) w[3];
 t_int size = (t_int) w[4];
 t_morph_tilde *x =
 (t_morph_tilde*)w[5];

 int pos = x->inobj1->PushIn(in1, size);
 x->inobj2->PushIn(in2, size);
 x->synth->PopOut(out, size);

 if(pos == DEF_VECSIZE){
 x->spec1->DoProcess();
 x->spec2->DoProcess();
 x->morph->DoProcess();
 x->synth->DoProcess();
 }
 return (w+6);
}

109

Class PVRead

Description
This class reads an input PVOCEX-format amplitudet/frequency file at any specified rate,
producing a time-domain signal. For multichannel files it provides a multichannel output as
well as a mono sum of all channels. Separate channels can be accessed via output SndObj
objects (one per channel).

Construction
PVRead();
PVRead(char* name, float timescale=1.0,int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
SndObj* Outchannel(int channel)
void SetInput(char* name)
void SetTimescale(float timescale)

Messages
[set] “timescale”

Details

construction
PVRead();
PVRead(char* name, float timescale=1.0,int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Constructs a PVRead() object:

char* name: filename of a PVOCEX-format amplitude/frequency file.
float timescale: timescale control, 1 for normal play, < 1 for time stretching and > 1 for time
compression.
int vecsize: synthesis vector size, defaults to 256.
int sr: sampling rate, defaults to 44100.

public methods
SndObj* Outchannel(int channel)

For multichannel files, this method returns the SndObj pointer associated with a particular
channel. The object pointer can then be used to obtain the individual output of each channel.
For instance,

SndObj* channel2 = specread.Outchannel(2);
output.SetOutput(2, channel2);

void SetInput(char* name)

This sets the output filename from which a PVRead object will read.

void SetTimescale(float timescale)

Sets the timescale for resynthesis. This parameter can be set with the message “timescale”
and Set().

110

SndObj Library Reference Class PVRead

Examples

A PVRead object includes an internal SndPVOCEX object which is used to read from
PVOCEX files. The DoProcess() method manipulates the readout so that any time-scale
modification can be achieved. A PVRead object can be instatiated by passing it a filename to
be read and, optionally, a timescale value.

PVRead pvfile(“spec.pvx”, 1.2);
output.SetOutput(1, &pvfile);

If the file is multichannel, PVRead holds the mono sum of all channels. Individual channels
can be accessed as discussed above. A processing loop for this example would look like this:

while(processing_on){
 pvfile.DoProcess();
 output.Write();
}

111

Class PVTransp

Description
This class implements pitch transposition of PV data. It takes an input from a PV-data
generating SndObj and changes its pitch according to a fixed value or a time-vaying signal (or
a combination of both). It also includes an optional operation mode whereby there is an
attempt to preserve sound formants, whose success depends very much on the input spectra.
This option is turned off by default.

Construction
PVTransp()
PVTransp(SndObj* input, float pitch, int mode=NORMAL_TRANSP,
 SndObj* inpitch=0, int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

Public Methods
void SetPitch(float pitch, SndObj* inpitch=0)
void SetMode(int mode)

Messages
[set,connect] “pitch”
[set] “mode”

Details

construction
PVTransp()
PVTransp(SndObj* input, float pitch, int mode=NORMAL_TRANSP,
 SndObj* inpitch=0, int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

These methods construct a PVTransp object:

SndObj* input: input spectral SndObj, generating a PV-format signal.
float pitch: pitch transposition factor (multiplier), or transposition interval, offset.
int mode: transposition mode, either NORMAL_TRANSP or KEEP_FORMANT.
SndObj* inpich: pitch transposition modulation input; final transposition will be a sum of this
signal input with the value of the pitch offset.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetPitch(float pitch, SndObj* inpitch=0)
void SetMode(int mode)

These two methods set the basic PVTransp parameters, pitch transposition and mode.

Examples
PVTransp can be used for all sorts of pitch modification applications. The following example
shows a simple input signal transposer:

SndRTIO input(1, SND_INPUT);
SndRTIO output(1, SND_OUTPUT);

112

SndObj Library Reference Class PVTransp

 HammingTable window(1024, 0.54f);

 SndIn in(&input);
 PVA anal(&window, &in);
 PVTransp trans(&anal, pitch,formants);
 PVS synth(&window, &trans);

 output.SetOutput(1, &synth);

The above chain of SndObjs sets up a basic transposer. Its output can be added to the input
signal for a harmoniser-like effect. Please note that due to the FFT process, there is an
inherent delay of 1024 (DEF_FFTSIZE) to this process. A typical processing loop will look like
this (not needed if using SndThread):

 for(int i=0; i<end; i++){
 input.Read();
 in.DoProcess();
 anal.DoProcess();
 trans.DoProcess();
 synth.DoProcess();
 output.Write();
}

113

Class PVS

Description
The PVS class implements an overlap-add, IFFT-based, phase vocoder resynthesis. It takes
input PV data (in the PVA/IFGram format) from an input SndObj and outputs a time-domain
signal.

Construction
PVS()
PVS(Table* window, SndObj* input, int fftsize=DEF_FFTSIZE, int hopsize=DEF_VECSIZE,

float sr=DEF_SR)

Details

construction
PVS()
PVS(Table* window, SndObj* input, int fftsize=DEF_FFTSIZE, int hopsize=DEF_VECSIZE,

float sr=DEF_SR)

Table* window: pointer to a Table-derived object implementing a suitable resynthesis window.
SndObj* input: pointer to a SndObj-derived object whose output, in the PVA/IFGram format,
will be resynthesised by PVS.
int fftsize: the FFT size, the number of frequency points in the analysis, which will also
determine the expected input vector size. Defaults to DEF_FFTSIZE (1024).
int hopsize: the hopsize, or decimation, which determines the number of samples in between
successive FFT analysis frames and the time-domain output vector size. Defaults to
DEF_VECSIZE (256).
float sr: the sampling rate for this object. Defaults to DEF_SR (44100.f).

Examples

PVS basically resynthesises PV data. So if we take a sound, use PVA to analyse it, PVS will
reconstruct it:

PVA spec1(&winobj, &inobj1);
PVS tdsig(&winobj, &spec1);

Of course, for practical purposes, we would transform the PV data in some way before the
resynthesis.

114

Class PVTable

Description
The PVTable object builds a spectral function table based on the phase vocoder analysis of a
soundfile. It takes SndFIO-derived object linked to an open file (in READ mode) and analyses
a portion of it. The table is built on an averaging of the spectral analysis over the specified
time. The spectal table data format is the same employed by the SndObj spectral (PV)
classes: 0Hz and Nyquist points, followed by all other spectral points from 1 to N/2 –1. The
frequency values are set to bin centre frequencies. The table values are not normalised.

Construction
PVTable()
PVTable(long L, SndFIO* input, Table* window,
 float start, float end)

Public Methods
void SetTable(SndFIO* soundfile, Table* window,
 float start, float end)

Details

construction
PVTable()
PVTable(long L, SndFIO* input, Table* window,
 float start, float end)

Constructs a PVTable object.

long L: table length.
SndFIO* input: input sound, pointer to the location of a SndFIO-derived object (soundfile
input).
Table* window: analysis window, a Table-derived object of the same length as this table.
float start: start position in seconds of PV analysis.
float end: end position in seconds (from start of file) of PV analysis. If beyond the end-of-file,
then the soundfile will be analysed to its end.

public methods
void SetTable(SndFIO* soundfile, Table* window,
 float start, float end)

This method sets the function table parameters.

115

Class Rand

Description
The Rand class is a simple random signal (white noise) generator.

Construction
Rand()
Rand(float amp, SndObj* InAmpObj = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
short SetAmp(float amp, SndObj* InAmpObj=0)

Messages
[set,connect] “amplitude”

Details

construction
Rand()
Rand(float amp, SndObj* InAmpObj = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Rand class. Construction parameters are:

float amp: amplitude offset. Initialised to 1.f .
SndObj* InAmpObj: amplitude control input, pointer to the location of a SndObj-derived
object. Defaults to 0, which means no amplitude input object, so the amplitude is fixed to the
amplitude offset value. This is added to the amplitude control input signal when a SndObj-
derived object is patched in.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
short SetAmp(float amp, SndObj* InAmpObj=0)

Sets the amplitude, returning 1 if succesfull and 0, in case of an error: Also, it is possible to
change the amplitude parameters with the message “amplitude” sent to the method Set().

Examples

A Rand object generates white noise:

Rand noise(10000.f);
output.SetOutput(1, &noise);

This would generate a noise signal which is output on channel 1 of a SndIO-derived output
object:

while(processing_on){
noise.DoProcess();
output.Write();
}

116

Class Randh

Description
The Randh object is a band-limited random signal generator. A frequency input controls how
many times per second a new number is drawn from a pseudo-random routine. The drawn
number is held at the output for 1/freq seconds.

Construction
Randh()
Rand(float freq, float amp, SndObj* InFrObj = 0, SndObj* InAmpObj = 0, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
short SetFreq(float freq, SndObj* InFreqObj=0)

Messages
[set,connect] “frequency”

Details

construction
Randh()
Rand(float freq, float amp, SndObj* InFrObj = 0, SndObj* InAmpObj = 0, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Rand class. Construction parameters are:

float fr: frequency offset, in Hz. Initialised to 44100 by the default constructor.
float amp: amplitude offset. Initialised to 1.f .
SndObj* InFrObj: frequency control input, pointer to the location of a SndObj-derived object.
The frequency can be controlled by a time-varying signal from another SndObj-derived object.
A signal is fed from the input object and added to the frequency offset value. Defaults to 0, no
frequency input object
SndObj* InAmpObj: amplitude control input, pointer to the location of a SndObj-derived
object. Defaults to 0, which means no amplitude input object, so the amplitude is fixed to the
amplitude offset value. This is added to the amplitude control input signal when a SndObj-
derived object is patched in.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
short SetFreq(float freq, SndObj* InFreqObj=0)

Sets the frequency, returning 1 if succesfull and 0, in case of an error: Also, it is possible to
change the frequency parameters with the message “frequency” sent to the method Set().

Examples

A Randh object generates band-limited noise:

Rand noise(100.f, 10000.f);
output.SetOutput(1, &noise);

117

SndObj Library Reference Class Randh

This would generate a noise signal, with most of its energy concentrated below 100 Hz. This
is output on channel 1 of a SndIO-derived output object:

while(processing_on){
noise.DoProcess();
output.Write();
}

118

Class Randi

Description
The Randi object is a band-limited random signal generator. A frequency input controls how
many times per second a new number is drawn from a pseudo-random routine. The output
will interpolate linearly between successive random values. Randi produces a narrower
bandwidth signal than its superclass, Randh.

Construction
Randi()
Rand(float freq, float amp, SndObj* InFrObj = 0, SndObj* InAmpObj = 0, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
Randi()
Rand(float freq, float amp, SndObj* InFrObj = 0, SndObj* InAmpObj = 0, int
vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Rand class. Construction parameters are:

float fr: frequency offset, in Hz. Initialised to 44100 by the default constructor.
float amp: amplitude offset. Initialised to 1.f .
SndObj* InFrObj: frequency control input, pointer to the location of a SndObj-derived object.
The frequency can be controlled by a time-varying signal from another SndObj-derived object.
A signal is fed from the input object and added to the frequency offset value. Defaults to 0, no
frequency input object
SndObj* InAmpObj: amplitude control input, pointer to the location of a SndObj-derived
object. Defaults to 0, which means no amplitude input object, so the amplitude is fixed to the
amplitude offset value. This is added to the amplitude control input signal when a SndObj-
derived object is patched in.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples

A Randi object generates band-limited noise:

Rand noise(100.f, 10000.f);
output.SetOutput(1, &noise);

This would generate a noise signal, with most of its energy concentrated below 100 Hz. This
is output on channel 1 of a SndIO-derived output object:

while(processing_on){
noise.DoProcess();
output.Write();
}

119

Class ReSyn

Description
The ReSyn class implements sinusoidal additive resynthesis, based on a cubic interpolation
algorithm. The class takes an input from a SinAnal-type class, which consists of a series of
tracks containing amplitude, frequency and phase information. Tracks are identified by IDs
given by the input object, which are then used to match them between hop periods. ReSyn
objects can resynthesise any number of tracks up to the maximum tracks found at their input.
ReSyn can modify the timescale of the resynthesis by altering the hopsize between frames
and modify the pitch by scaling the frequencies on each hopsize

Construction
ReSyn()
ReSyn(SinAnal* input, int maxtracks, Table* table, float pitch=1.f, float scale=1.f,
 float tscale=1.f, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetTimeScale(float scale)
void SetPitch(float pitch)

Messages
[set] “timescale”
[set] “pitch”

Details

construction
ReSyn()
ReSyn(SinAnal* input, int maxtracks, Table* table, float pitch=1.f, float scale=1.f,
 float tscale=1.f, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct a ReSyn object:

SinAnal* input: input object object, of the SinAnal type, from which the tracks to be
resynthesised will be read.
int maxtracks: max resynthesis tracks, should be <= tracks generated by the input object.
Table* table: table object containing a wavetable to be used by each oscillator in the
resynthesis, typically a cosine wave.
float pitch: pitch scaling of output (transposition ratio).
float scale: amplitude scaling of output.
float tscale: timescaling factor, the interpolation(synthesis hopsize):decimation ratio(analysis
hopsize)
int vecsize: object vector size, also determines the synthesis hopsize between analysis
frames (defaults to 256).
float sr: sampling rate in Hz (defaults to 44100).

public methods
void SetTimeScale(float scale)
void SetPitch(float pitch)

These methods set the different object parameters, such as the timescale and pitch factor.
Note that the timescale factor only needs to be reset in case of change of the vector size
(synthesis hopsize). These can alternatively be set using the messages listed above.

120

SndObj Library Reference Class ReSyn

Examples

The following connections are a simple example of the use of ReSyn to resynthesise track
data generated by SinAnal:

HarmTable table(4000, 1, 1, 0.75); // cosine wave
HammingTable window(fftsize, 0.5); // hanning window

// input sound
SndWave input(infile,READ,1,16,0,0.f,decimation);
SndIn insound(&input, 1, decimation);

// IFD analysis
IFGram ifgram(&window,&insound,1.f,fftsize,decimation);
// Sinusoidal analysis
SinAnal sinus(&ifgram,thresh,intracks);
// Sinusoidal resynthesis
ReSyn synth(&sinus,outracks,&table,pitch,scale,(float) interpolation/decimation,
 interpolation);

// output sound
SndWave output(outfile, OVERWRITE,1,16,0,0.f,interpolation);
output.SetOutput(1, &synth);

This code takes an input sound, from a file and passes it through the analysis process and
then the data is resynthesised. The timescale change is determined by the
decimation:interpolation ratio. In order to implement processing, the programmer either needs
to write a loop and call the reading/writing and processing methods, or use a SndThread
object, passing these objects to it. For the full program code, see src/examples/sinus.cpp.

121

Class Ring

Description
The Ring object is a multi-purpose ring modulator. It multiplies two inputs together and it can
be used both as standard ring modulator or as a variable gain control.

Construction
Ring()
Ring(SndObj* InObj1, SndObj* InObj2, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
short SetInput1(SndObj* InObj)
short SetInput2(SndObj* InObj)

Messages
[connect] “input 2”

Details

construction
Ring()
Ring(SndObj* InObj1, SndObj* InObj2, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Ring class. The default constructor sets the inputs
to 0, so they need to be set before use. If one of the inputs is not set, the output will be silent.

SndObj* InObj1, InObj2: the two inputs, pointers to locations of SndObj-derived objects.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
short SetInput1(SndObj* InObj)
short SetInput2(SndObj* InObj)

These two methods connect the two inputs. They can also be connected using the messages
“input” and “input 2” and the Connect() method.

Examples

Ring can be used as a ring modulator with two audio-range signals or as an amplitude
modulator/shaper with one of the inputs being a low-frequency / envelope signal. In a ring
modulator we could have the following connections:

Oscili sigobj1(&sinetable, 250.f, 10000.f);
Oscili sigobj2(&sinetable, 300.f, 10000.f);
Ring ringmod(&sigobj1, &sigobj2);

In an amplitude shaper, we could have:

Oscili sigobj(&sinetable, 250.f, 10000.f);
Interp envobj(0.f, 1.f, 2.f);
Ring gain(&sigobj, &envobj);

122

SndObj Library Reference Class Ring

This last example would create a linearly rising amplitude signal which would reach its
maximum in 2 seconds:

while(processing_on){

sigobj.DoProcess();
envobj.DoProcess();
gain.DoProcess();
output.Write();

}

123

Class SinAnal

Description
The SinAnal class implements sinusoidal analysis of a spectral input. The class takes a
frequency, amplitude and (unwrapped) phase input from a spectral analysis object (typically
an IFGram object, but if the phase information is not relevant, also a PVA object can be
used). It estimates the spectral peaks present in successive analysis according to a certain
threshold. In case of permanent peaks, the object outputs ‘tracks’ corresponding to each
peak. The tracks contain the amplitudes, frequencies and phases at each hop-period. Tracks
are ordered by increasing time origin and then ascending frequency. At each hop-period, a
number of tracks is output, and this number can be obtained from the object. The object
output will consist of that number of tracks, each containing the three spectral parameters.
Tracks are also given a unique ID to identify them between periods, for resynthesis and other
purposes. IDs can be retrieved from the object with the appropriate method.

Construction
SinAnal();
SinAnal(SndObj* input, float threshold, int maxtracks, int minpoints=1,
 int maxgap=3, float sr=DEF_SR)

Public Methods
int GetTrackID(int track)
int GetTracks()
void SetThreshold(float threshold)
void SetIFGram(SndObj* input);
void SetMaxTracks(int maxtracks);

Messages
[set] “max tracks”
[set] “threshold”

Details

construction
SinAnal();
SinAnal(SndObj* input, float threshold, int maxtracks, int minpoints=1,
 int maxgap=3, float sr=DEF_SR)

These methods construct a SinAnal object:

SndObj* input: an input SndObj-object derived spectral analysis object, usually an IFGram
object, but in certain cases, other spectral-type objects can also be used.
float threshold: analysis threshold, between 0 and 1. This determines which peaks to look for,
excluding the ones with magnitude below the threshold. The threshold is set against the
highest magnitude, so it cuts peaks whose amplitude is below threshold*mag_max.
int maxtracks: maximum number of output tracks at each hop period.
int minpoints: minimum number of past time points (hop periods) needed for a peak to make
it into a track. Higher values will exclude short-lived peaks from the analysis. This will also
imply an extra delay between input and output, because of the need to wait a number of hop-
periods before peaks are output.
int maxgap: the maximum gap between time-points that peaks can have before a track is
considered dead.
float sr: sampling rate, defaults to 44100.f.

124

SndObj Library Reference Class SinAnal

public methods
int GetTrackID(int track)

This method returns the ID associated with the output track index (the argument to it). Its
function is to match tracks between hop-periods.

int GetTracks()

This method returns the number of tracks at the output.

void SetThreshold(float threshold)

This method sets the analysis threshold (also set by the message “threshold”).

void SetIFGram(SndObj* input)

This connects the input SndObj object, which usually is an IFGram object.

void SetMaxTracks(int maxtracks)

This sets the maximum number of input tracks. The message “max tracks” has the same
effect.

Examples

The following is taken from the example program sinus (src/examples/sinus.cpp):

// IFD analysis
IFGram ifgram(&window,&insound,1.f,fftsize,decimation);
// Sinusoidal analysis
SinAnal sinus(&ifgram,thresh,intracks, 1, 3);
// Sinusoidal resynthesis
SinSyn synth(&sinus,outracks,&table,scale,interpolation);

This program takes an input sound analyses it and outputs the resynthesised sound, with a
possible time-scale modification. It was noted that some sounds will have a more successful
analysis than others. Low-frequency sounds are often problematic.

125

SndObj Library Reference Class SinSyn

Class SinSyn

Description
The SinSyn class implements sinusoidal additive resynthesis, based on a cubic interpolation
algorithm. The class takes an input from a SinAnal-type class, which consists of a series of
tracks containing amplitude, frequency and phase information. Tracks are identified by IDs
given by the input object, which are then used to match them between hop periods. SinSyn
objects can resynthesise any number of tracks up to the maximum tracks found at their input.

Construction
SinSyn()
SinSyn(SinAnal* input, int maxtracks, Table* table, float scale=1.f,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetTable(Table* table)
void SetMaxTracks(int maxtracks)
void SetScale(float scale)

Message
[set] “max tracks”
[set] “scale”
[connect] “table”

Details

construction
SinSyn()
SinSyn(SinAnal* input, int maxtracks, Table* table, float scale=1.f,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct a SinSyn object:

SinAnal* input: input object object, of the SinAnal type, from which the tracks to be
resynthesised will be read.
int maxtracks: max resynthesis tracks, should be <= tracks generated by the input object.
Table* table: table object containing a wavetable to be used by each oscillator in the
resynthesis, typically a cosine wave.
float scale: amplitude scaling of output.
int vecsize: object vector size, also determines the synthesis hopsize between analysis
frames (defaults to 256). This needs to be the same value of the analysis hopsize for proper
resynthesis
float sr: sampling rate in Hz (defaults to 44100).

public methods
void SetTable(Table* table)
void SetMaxTracks(int maxtracks)
void SetScale(float scale)

These methods set the different object parameters, such as the resynthesis wavetable,
maximum number of tracks and scaling factor. These can alternatively be set/connected
using the messages listed above.

126

SndObj Library Reference Class SinSyn

Examples

The following connections are a simple example of the use of SinSyn to resynthesise track
data generated by SinAnal:

HarmTable table(4000, 1, 1, 0.75); // cosine wave
HammingTable window(fftsize, 0.5); // hanning window

// input sound
SndWave input(infile,READ,1,16,0,0.f);
SndIn insound(&input, 1, decimation);

// IFD analysis
IFGram ifgram(&window,&insound,1.f,fftsize);
// Sinusoidal analysis
SinAnal sinus(&ifgram,thresh,intracks);
// Sinusoidal resynthesis
SinSyn synth(&sinus,outracks,&table,scale);

// output sound
SndWave output(outfile, OVERWRITE,1,16,0,0.f);
output.SetOutput(1, &synth);

This code takes an input sound, from a file and passes it through the analysis process and
then the data is resynthesised. In order to implement processing, the programmer either
needs to write a loop and call the reading/writing and processing methods, or use a
SndThread object, passing these objects to it.

127

Class SndAiff

Description
The SndAiff class implements AIFF file input/output. It currently support PCM formats only.

Construction
SndAiff(char* name, short mode, short channels=1, short bits=16, SndObj** inputlist=0,
 float spos= 0.f, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
SndAiff(char* name, short mode, short channels=1, short bits=16, SndObj** inputlist=0,
 float spos= 0.f, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

This method constructs an object of the SndAiff class. Construction parameters are:

char* name: input/output AIFF soundfile name.
short mode: file open mode. One of the four options: OVERWRITE, APPEND,INSERT or
READ. The first three open the file for writing (output), the last one opens it for reading (input).
short channels: number of output channels.
short bits: number of bits per sample (sample size). Since this class implements input from a
self-describing format, in the READ mode the sample precision will be obtained from the
soundfile header (8, 16, 24 and 32-bit formats are supported).
SndObj** inputlist: array of pointers to locations of SndObj-derived objects, which will be
patched to the output channels.
float spos: start position of the read/write pointer, in seconds from the beginning of the sound
data.
int vecsize: vector size in samples. Size of the internal read/write buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f. Since this class implements input
from a self-describing format, in the READ mode the sampling rate will be obtained from the
soundfile header.

Examples
SndAIff is a specialisation of the SndIO class to deal with AIFF-format files. As such it takes
the signal format information from the soundfile header and it also writes a header with full
details. The output header writing is only complete when an object is destroyed. If the
program fails to kill the object (for instance when a dynamic type is not deleted or when the
program has exited early or crashed), the header will not be properly updated.

SndAiff outfile(“output.aif”, OVERWRITE);

The following object can write to an aiff file. A simple raw-format to aiff conversion program
using that object can be written like this:

SndFIO infile(“input.raw”, READ);
SndIn input(&infile, 1);
outfile.SetOutput(1, &input);

while(!infile.Eof()){

infile.Read();

128

SndObj Library Reference Class SndAiff

SndIn.DoProcess();
SndAiff.DoProcess();

}

129

Class SndASIO

Description
The SndASIO class implements ASIO driver input/output, as an option for realtime IO on
Windows systems where such drivers are present. The main operational difference with the
SndRTIO class is that one, and only one, object is required for both input and output (full
duplex operation), as opposed to separate objects for input and output.

This class is based on the Steinberg ASIO API, and as such cannot be compiled under
cygwin and is not present in that version. It has been compiled, tested and is available for the
MS-Visual C++ compiler (it is posssible that it can be compiled with Borland C++ as well).

It is expected that a number of synchronisation and timing features will be added to this class
in the future. This method of sound IO is probably the most efficient and with the best latency.

Construction
SndASIO(int channels, int mode = SND_IO, char* driver = "ASIO Multimedia Driver", int
numbuffs=4, SndObj** inputs = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Utilities
void DriverList()
char* DriverName(int dev, char* name)

Details

construction
SndASIO(int channels, int mode = IO, char* driver = "ASIO Multimedia Driver", SndObj**
inputs = 0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

This method constructs an object of the SndASIO class. Construction parameters are:

int channels: number of requested audio channels (the number audio channelsthat are
opened will actually depend on the device driver and audio card). Some audio cards will only
work properly with a minimum of two channels, it is advisable to open the device in stereo by
default.
int mode: either SND_IO, for simultaneous input and output, SND_INPUT, for input only, or
SND_OUTPUT, for output only.
char * driver: string containing the name of the device to be open. It must be present in the
system. Use the utility functions DriverList() and DriverNames to obtain information about
drivers available in the system.
int numbuffs: number of audio buffers, at least two, but usually 4 (the default).
SndObj** inputs: array of [channels] pointers to input SndObj objects, one per channel.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Utilities
void DriverList()

lists all present drivers on the standard output.

char* DriverName(int dev, char* name)

retrieves the name of a driver with driver ID dev, placing it into the string name. This string

130

SndObj Library Reference Class SndASIO

should contain 32 characters, at least. It returns the string contatining device name. A NULL
pointer (0) is returned if the device ID is not valid

Examples
A SndASIO object can be used to read or write to an audio device:

SndASIO io(2);

The object behaves like any other SndIO object, calls to Read() and Write() are used to effect
the IO operations. The output object is set like this:

io.SetOutput(1, &outobj);

The sampling rate, buffersizes and latencies are adjusted externally to the client. If these are
changed on-the-fly the object will possibly need to be deleted and re-initialised.

131

Class SndBuffer

Description
This class implements buffer input/output. It reads/writes samples to a buffer, making it
possible to send buffered signals from one thread or process to another. The Read() and
Write() functions will block if the buffer is empty or full. This class can be used to create
buffering objects when synchronisation of signals from multiple threads is necessary.

Construction
SndBuffer(short channels, int buffsize=DEF_VECSIZE, SndObj** inputlist=0,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
SndBuffer(short channels, int buffsize=DEF_VECSIZE, SndObj** inputlist=0,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

This method constructs an object of the SndBuffer class. Construction parameters are:
short channels: number of input/output channels
int buffsize: size of memory buffer, set by default to the same size of the DSP vector, but
does not necessarily need to be of that size (but it will help if it is an integer multiple of the
vector size), in sample frames.
SndObj** inputlist: list of input SndObj-derived objects, one for each output channel.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples

Read() reads the buffer and outputs a new signal vector to the processing chain every time it
is called. Should be used in conjunction with at least one SndIn object. Calls to Read() will
block if no samples are currently present in the buffer. Successive calls to Write() will fill the
buffer with new samples.

Write() writes a new signal vector to the buffer every time it is called. Calls to Write() will block
if the buffer is full. Successive calls to Read() will empty the buffer.

SndBuffer behaves like any other SndIO object, except that it writes to memory, instead of a
particular device. It can be used to buffer signals between different threads.

132

Class SndCoreAudio

Description
The SndCoreAudio class implements dedicated audio IO to CoreAudio drivers in Mac OSX.
A single object of this class is used on an application as it opens the driver for both input and
output. To access inputs, programs should issue calls to Read() and to send signals to the
outputs, the Write() method is used. See also the description of the SndRTIO class.

Construction
SndCoreAudio(int channels=2,int bufframes=512, int buffnos=4, float norm=32767.f,
 SndObj** inObjs=0, AudioDeviceID dev=DEV_DEFAULT,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
SndCoreAudio(int channels=2,int bufframes=512, int buffnos=4, float norm=32767.f,
 SndObj** inObjs=0, AudioDeviceID dev=DEV_DEFAULT,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

int channels: number of output channels.
int bufframes: size of the read/write buffer implemented to optimise the operation (in frames).
This is independent from the object output vector.
int buffnos: number of software buffers.
float norm: scaling value which will be applied to the input (actually its reciprocal). Since
CoreAudio takes signals in the –1.0 to + 1.0 range, this is used to normalise any signals that
might possibly be in the 16,24 or 32-bit ranges. This is mostly used for portability reasons. If
the input is in the right amplitude range, this can be set to 1. Defaults to 16-bit normalisation
(32767).
SndObj** inputs: array of pointers to locations of SndObj-derived objects, which will be
patched to the output channels.
AudioDeviceID dev: the CoreAudio device ID, usually an integer, zero being the first device.
It defaults to default output device (set in system preferences).
int vecsize: vector size in samples. Size of the internal DSP buffer, relevant only to INPUT
mode, defaults to DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Examples
A SndCoreAudio object can be used to read/write to an audio device:

SndCoreAudio soundcard;

This opens the default device (set in System Preferences) for input and output of stereo
signals. The object behaves like any other SndIO object, calls to Read() and Write() are used
to effect the IO operations. The output SndObjs are set like this:

soundcard.SetOutput(1, &outleft_obj);
soundcard.SetOutput(2, &outright_obj);

while(processing_on) {
 soundcard.Read();
 (...)
 soundcard.Write();
}

133

Class SndFIO

Description
The SndFIO class implements binary file input/output. It can be used for headerless ("raw"
format) soundfiles, or for reading/storing any information on binary files.

Construction
SndFIO(char* name, short mode, short channels=1, short bits=16, SndObj** inputlist=0,
 float spos= 0.f, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
file information and status:
short GetMode()
long GetDataFrames()
float GetPos()
short GetStatus()
int Eof()

setting reading position:
void SetPos(float pos)
void SetPos(long pos)

Details

construction
SndFIO(char* name, short mode, short channels=1, short bits=16, SndObj** inputlist=0,
 float spos= 0.f, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

This method constructs an object of the SndFIO class. Construction parameters are:

char* name: input/output file name.
short mode: file open mode. One of the four options: OVERWRITE, APPEND,INSERT or
READ. The first three open the file for writing (output), the last one opens it for reading (input).
short channels: number of output channels.
short bits: number of bits per sample (sample size: 8, 16, 24 and 32-bit formats are
supported).
SndObj** inputlist: array of pointers to locations of SndObj-derived objects, which will be
patched to the output channels.
float spos: start position of the read/write pointer, in seconds from the beginning of the file.
int vecsize: vector size in samples. Size of the internal read/write buffer, defaults to
DEF_VECSIZE, 256. float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
short GetMode()
long GetDataFrames()
float GetPos()
short GetStatus()

These methods retrieve the various class attributtes, respectively: read/write mode, number of
data frames to be read in the file, start position (in secs) of read/write operation and file status
(WAITOPEN, SFOPEN or SFERROR).

int Eof()

134

SndObj Library Reference Class SndFIO

This method is used to check whether a reading operation has reached the end of the file. It
returns 1 if so, and 0 if not.

void SetPos(float pos)
void SetPos(long pos)

These methods set the read/write pointer position, in secs and in bytes from the beginning of
the file(or from the beginning of sound data, after the header, etc.), respectively. They are
especially useful for reading information from different positions along the file.

Examples
The SndFIO class serves two main purposes: to provide raw soundfile IO and to set the
interface for all soundfile IO classes. Raw soundfile input and output is usually disliked as it
has the associated problems of portability and intelligibility.

SndFIO input(“soundfile.raw”, READ);

creates an object named input, which will read from “soundfile.raw”. It will take the samples to
be 16-bit long and the sample frame to contain 1 channel only. Data will be expected to be at
the 44100 Hz SR. The samples are taken to be in native byte ordering.

SndFIO output(“outfile.raw”, OVERWRITE);

can be used then to write to a raw soundfile with the same attributes as above. The signal to
be written to file is taken from a SndObj object, which is connected to the output as in:

output.SetOutput(1, &outobj);

The objects then are manipulated in a loop to provide the processing. Notice how
SndFIO::Eof() can be used to test if we reached the end of the file:

while(!input.Eof()){
input.Read();
(...)
output.Write();
}

135

Class SndIn

Description
This object receives one channel from a SndIO-derived object and outputs it in the SndObj
processing chain.

Construction
SndIn()
SndIn(SndIO* input, short channel=1, int vecsize=DEF_VECSIZE float sr=DEF_SR)

Public Methods
short SetInput(SndObj* input, short channel)

Messages
[set] “channel”
[connect] “input”

Details

construction
SndIn()
SndIn(SndIO* input, short channel=1, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the SndIn class. Construction parameters are:

SndIO* input: pointer to the location of a SndIO-derived object, such as, a soundfile input
object, a realtime input object, etc....
short channel: audio channel from which a monophonic stream will be read. Defaults to
channel 1.
int vecsize: the output vectorsize, defaults to 256.
float sr: sampling rate, defaults to 44100.

public methods
short SetInput(SndObj* input, short channel)

This method can be used to set the input object SndIn will be reading from. The messages
“channel” and “input” can be used to set a channel and an input to read from.

Examples

SndIn objects are utilities used to interface between SndIO and SndObj objects. Most SndObj
classes cannot take a direct input from a file or a device, so SndIO classes are there to
implement these actions. SndObj objects also cannot connect to SndIO objects, so the SndIn
class is there to provide this connection:

SndWave input(“soundfile.wav”,READ);
SndIn insound(&input, 1);

In the above example, we are reading the first channel of an input RIFF-Wave file. A
processing loop would look like this:

while(processing_on){
input.Read();

136

SndObj Library Reference Class SndIn

insound.DoProcess();
output.Write();
}
In the case of multichannel input, we would use multiple SndIn objects:

SndRTIO adc(2, SND_INPUT);
SndIn left_channel(&adc, 1);
SndIn right_channel(&adc, 2);

Each SndIn then would output the data from each respective input channel.

137

Class SndIO

Description
The SndIO class is the base class for all IO operations: file, RT audio, midi, text/console and
memory. This class implements input/output to the stdio. It reads/writes samples as text
(floats) to the standard IO, making possible the use of UNIX-like pipes and redirection.

Construction
SndIO (short channels=1, short bits=16,SndObj** inputlist=0, int vecsize=DEF_VECSIZE,
float sr=DEF_SR)

Protected Members
SndObj** m_IOobjs
float* m_output
float m_sr
short m_channels
short m_bits
int m_vecsize
int m_vecpos
int m_error

Public Methods
float GetSr()
int GetVectorSize()
short GetChannels()
short GetSize()
float Output(int pos, int channel)
short SetOutput(short channel, SndObj* input)

virtual short Read()
virtual short Write()
virtual char* ErrorMessage()

Details

construction
This method constructs an object of the SndIO class. Construction parameters are:

short channels: number of input/output channels
short bits: precision in bits (not directly applicable to this class, since it outputs floats,
whatever precision is specified). Defaults to 16 bits (shorts).
SndObj** inputlist: list of input SndObj /SndObj -derived objects, one for each output channel.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

protected members
SndObj** m_IOobjs: input object list, one item per channel. Allocated by the SndIO
constructor.
float* m_output: signal vector, used by input objects. The method Output() is used to access
the samples in this buffer. It works in an analoguous way to SndObj-derived classes. Note
that this is only relevant four signal input.
float m_sr: sampling rate in Hz. Set ONLY at construction.

138

SndObj Library Reference Class SndIO

short m_channels: number of channels.
short m_bits: precision in bits.
int m_vecsize: size of signal vector (in items).
int m_vecpos: counter to use when accessing vectors of other objects.
int m_error: error code
int m_samples: number of samples in the signal vector (vecsize*channels).

public methods
float GetSr()

Returns the current sampling rate in Hz of the object.

int GetVectorSize()

Returns the current output vector size of the object.

short GetSize()

Returns the size (in bits) of the input/output sample.

short GetChannels()

Returns the number of input/output channels.

short SetOutput(short channel, SndObj* input)

Sets the output channels of a SndIO object. Returns 1 if successfully patched. This method is
very useful as it allows patching of outputs after construction, which is the usual way of doing
things.

virtual short Read ()

Reads one buffer of input signal. Returns 1 if successful. This function is normally placed in a
loop with other processing functions such as DoProcess().

virtual short Write ()

Writes one buffer of output signal. Returns 1 if successful. This function is normally placed in
a loop with other processing functions such as DoProcess().

virtual char* ErrorMessage ()

This method retrieves an error string from a SndObj class object. It is used for simple
debugging.

Examples
The SndIO class is the base class for all input/output in the library. As such, its function is
rather like SndObj, in that it provides the common interface for all IO operations. Its
functionality in terms of processing is small. It can input/output signals as text characters to
the standard IO. Simple piping of data can be then established with a SndIO object.

SndIO stdio(1);

Creates a SndIO object that will can from the standard input and write to the standard output.
This object will handle one channel of data. Multichannel data is expected to be interleaved,
so a 2 channel object will separate every other data item to each IO channel. With a SndObj-
derived SndIn, we can get the data into a SndObj chain:

139

SndObj Library Reference Class SndIO

SndIn input(&stdio, 1);

The SndIn input object can be patched into any other SndObj object. Even back into stdio:

stdio.SetOutput(1, &input);

Such patching will send the input straight out of the program, through the standard output. it
will work rather like ‘echo’. In order to effect the processing we have to write a loop (or use
SndThread):

while(processing_on){

stdio.Read();
input.DoProcess();
stdio.Write();

}

This is a rather silly program, but it shows how to connect the SndIO objects into a SndObj
chain. See the reference page on the class SndObj, for other ways of connecting the two
types of objects together.

140

Class SndJackIO

Description
The SndJackIO class implements audio input and output to a Jack Connection Kit server. The
server needs to be already running in the machine. If it is not, the object will fail to construct.
Any number of objects can be instantiated, each one will provide a input, output (or both) port
for each channel. For simple applications, a single instance of the class can be used for both
input and output. The ports are always connected by default to the hardware ports of the Jack
server. They of course can be disconnected (programmatically or manually). The Jack signal
standard defines 0dB amplitude as 1.0. Signals are expected to lie within that range.

Construction
SndJackIO(char* name, int channels=2, int mode= SND_IO, int buffnos=4,
 SndObj** inObjs=0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
int ConnectIn(int channel, char* port)
int ConnectOut(int channel, char* port)
int DisconnectIn(int channel, char* port)
int DisconnectOut(int channel, char* port)

jack_client_t *GetClient()
jack_port_t *GetinPort(int channel)
jack_port_t *GetOutPort(int channel)

Details

construction
SndJackIO(char* name, int channels=2, int mode= SND_IO, int buffnos=4,
 SndObj** inObjs=0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

char *name: string with the name of the client, which will be used to identify the ports in the
server. Ports will be named name_[in/out]channel.
int channels: number of output channels.
int buffnos: number of software buffers.
SndObj** inputs: array of pointers to locations of SndObj-derived objects, which will be
patched to the output channels.
int vecsize: vector size in samples. Size of the internal DSP buffer, relevant only to INPUT
mode, defaults to DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
int ConnectIn(int channel, char* port)
int ConnectOut(int channel, char* port)

These methods connect the object input or output ports to specific ports, referred to by their
name strings. if the port cannot be connected the methods return 0.

jack_client_t *GetClient()

This method returns the client handle associated with this object. It can be used to call other
Jack API functions not defined in this class.

141

SndObj Library Reference Class Name

jack_port_t *GetinPort(int channel)
jack_port_t *GetOutPort(int channel)

These methods retrieve the port IDs associated with specific input or output channels.

Examples
A SndJackIO object can be used to read/write to a Jack port running on a server:

SndJackIO jack(“sndobjapp”);

This creates a Jack client on a server with two input ports and two output ports. The ports will
be named “sndobjapp_in1”, “sndobjapp_in2”, “sndobjapp_out1” and “sndobjapp_out2”.
The output SndObjs are set like this:

jack.SetOutput(1, &outleft_obj);
jack.SetOutput(2, &outright_obj);

Signals can be input and output to the Jack ports with calls to Read() and Write():

while(processing_on) {
 jack.Read();
 (...)
 jack.Write();
}

142

Class SndLoop

Description
This object samples and loops a portion of a signal, with user-defined crossfade and loop
time. The playback pitch can also be controlled, by the pitch multiplier parameter. A signal
starts to be sampled when the DoProcess() method is called for the first time, but it can be
resampled at any time.

Construction
SndLoop()
SndLoop(float xfadetime, float looptime, SndObj* InObj, float pitch = 1.f,

int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetXFade float xfadetime)
void SetPitch(float pitch)
void ReSample()

Messages
[set] “crossfade”
[set] “pitch”
[set] “resample”

Details

construction
SndLoop()
SndLoop(float xfadetime, float looptime, SndObj* InObj, float pitch = 1.f,
int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the SndLoop class. Construction parameters are:

float xfadetime: cross-fade time between the end and start points of the signal loop in secs.
float looptime: total loop time in secs.
SndObj* InObj: input object, pointer to the location of a SndObj-derived object. The output
signal from this object is added to the offset value and then used as the index on the lookup
process.
float pitch: pitch ratio affecting the playback rate of the loop. Values > 1 increase the original
pitch and < 1 decrease it,
also affecting the playback speed.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetXFade float xfadetime)
void SetPitch(float pitch)
void ReSample()

These methods set the different parameters of a SndLoop object, as described above. These
can also be set using the messages “crossfade”, “pitch” and “resample” (this one with
any value, which is ignored).

143

SndObj Library Reference Class SndLoop

Examples

The following example shows a SndLoop object which takes a signal from the input (file or
device), and samples it for 5 seconds, playing it back in a loop afterwards:

SndIn inobj(&input, 1);
SndLoop sampler(0.05f, 5.f, &inobj);

(...)

while(processing_on){

input.Read();
inobj.DoProcess();
sampler.DoProcess();
output.Write();

}

144

Class SndMidiIn [/SndMidi]

Description
The SndMidiIn class implements MIDI input on selected platforms (OSS, Irix and Windows
MME). This class is derived from the SndIO SndMidi class, which is never used directly. The
SndMidi class provides the basic mechanisms for realtime MIDI IO.

Construction
All Platforms:
SndMidiIn()

OSS/Irix:
SndMidiIn(char* port, int buffsize=64)

Windows MME:
SndMidiIn(int port, int buffsize=64)

Public Methods
[implemented in SndMidi]
short NoteOn()
short NoteOff()
char LastNote()
char Velocity(char note)
char LastNoteVelocity()
char Aftertouch(char note)
char LastNoteAftertouch()
short GetMessage(short channel)

Details

construction
SndMidiIn()
SndMidiIn(int port, int buffsize=64)
SndMidiIn(char* port, int buffsize=64)

These methods construct an object of the SndMidiIn class. Construction parameters are:

char port: midi input device. Defaults to the first input device on all platforms: "Serial Port 2"
on Irix and "/dev/midi/" on OSS.
int port: midi input device, defaults to 0 (first input device).
int buffsize: size of input buffer.

On Windows, the number of devices and their names can be retrieved using three utility
functions provided by this library:

void MidiDeviceList(): lists all present devices on the standard output.
char* MidiInputDeviceName(int dev, char* name): retrieves the name of a MIDI device with
device ID dev, placing it into the string name. This string should be of MAXPNAMELEN size,
at least. Both functions return the device name. A NULL pointer (0) is returned if the device ID
is not valid. The sample code below will list all input devices on the standard output:

char name[MAXPNAMELEN];
int j = 0;

145

SndObj Library Reference Class SndMidiIn

while(MidiInputDeviceName(j, name)){
cout << name << "\n";
j++;
}

public methods
shortNoteOn()
short NoteOff()

These methods can be used to check for NOTE messages. Whenever a new noteon/off
message is received, these methods will return the note number. If no new NOTE message
was received, they return -1. They will keep returning -1 until a new noteon/off message was
received.

char LastNote()
char LastNoteVelocity()
char Velocity(char note)

These methods retrieve, respectively, the last note number received, its velocity and the last
velocity value for a particular note number.

char Aftertouch(char note)
char LastNoteAftertouch()
These methods retrieve, respectively, the last aftertouch value for a particular note and the
aftertouch value for the last note received.

short GetMessage(short channel)

This method retrieves a code reflecting the current MIDI channel message number received.
The usual set codes are:

NOTE_MESSAGE, note on
PBEND_MESSAGE, pitchbend or controller 0
MOD_MESSAGE, modulation wheel (controller 1)
BREATH_MESSAGE, breath control (controller 2)
FOOT_MESSAGE, breath control (controller 4)
PORT_MESSAGE, portamento (controller 5)
VOL_MESSAGE, volume (controller 6)
BAL_MESSAGE, balance (controller 7)
PAN_MESSAGE , pan (controller 9)
EXPR_MESSAGE, expression (controller 10)
AFTOUCH_MESSAGE, monophonic aftertouch or channel pressure
POLYAFTOUCH_MESSAGE, polyphonic aftertouch
PROGRAM_MESSAGE, program change
VELOCITY_MESSAGE, velocity (from a note message)
NOTEOFF_MESSAGE, note off

float Output(int channel)

The SndIO::Output() method can be used to retrieve the current output value for a particular
MIDI message on a particular MIDI channel. The MIDI byte number returned (as a float) will
depend on the type of message (for instance, for NOTE messages, the value returned is MIDI
byte 2, note number).

Examples

146

SndObj Library Reference Class SndMidiIn

Read() Outputs the current MIDI input message, every time it is called. Used in conjuction
with MidiIn or MidiIn-derived classes. Returns the number of messages read (on Windows
this means 1, on SGI it can be > 1) and 0 if no new messages were received.

SndMidiIn input(1); // Port 1 (on Windows)
(...)

while(processing_on){

(...)
input.Read(); // reads MIDI messages from the interface
(...)

}

147

Class SndObj

Description
The SndObj class is the base for the processing classes in the Sound Object Library. It
defines the basic elements that make up a Sound Processing Object and provides basic
methods for manipulating them. This class provides very little processing, it merely copies its
input signal to the output (signal is read from an input object and copied to the output buffer).
Its importance is that it establishes the basic mechanisms on which the library is based.
Nevertheless,SndObj objects can be useful for simple applications such as retrieving signals
from vectors, scaling, offset, mixing, etc..

Construction
SndObj()
SndObj(SndObj& obj)
SndObj(SndObj *input, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Protected Member Variables
float *m_output
SndObj *m_input
float m_sr
int m_vecsize
int m_vecpos
int m_error
short m_enable
msg_link *m_msgtable

Protected Methods
void AddMsg(char *mess, int ID)
int FindMsg(char *mess)

Public Methods
processing bypass:
void Enable()
void Disable()

output signal access:
float Output(int pos)
int PopOut(float *vector, int size)
int AddOut(float* vec, int size)

signal input:
int PushIn(float *vector, int size)

parameter/state access:
bool IsProcessing()
int GetVectorSize()
int GetError();
float GetSr()
SndObj* GetInput()
void GetMsgList(string* list)

parameter/state setting:
virtual void SetSr(float sr)

148

SndObj Library Reference Class SndObj

void SetInput(SndObj *input)
void SetVectorSize(int vecsize)

message passing:
virtual int Set(char *mess, float value)
virtual int Connect(char *mess, void *input)

operators:
SndObj operator=(SndObj obj)
SndObj operator+(SndObj& obj)
SndObj operator-(SndObj& obj)
SndObj operator*(SndObj& obj)
SndObj& operator+=(SndObj& obj)
SndObj& operator-=(SndObj& obj)
SndObj& operator*=(SndObj& obj)
SndObj operator+(float val)
SndObj operator-(float val)
SndObj operator*(float val)
SndObj& operator+=(float val)
SndObj& operator-=(float val)
SndObj& operator*=(float val)
void operator>>(SndIO& obj)
void operator<<(SndIO& obj)
void operator<<(float val)
void operator<<(float *vector)

signal processing:
virtual short DoProcess()

error messages:
virtual char* ErrorMessage()

Messages
[Set] “SR”
[Set] “vector size”
[Connect] “input”

Details

construction
SndObj()
SndObj(SndObj& obj)
SndObj(SndObj *input, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the SndObj class. The default constructor SndObj()
creates a basic object with the default sampling rate DEF_SR (44100), default vector size
DEF_VECSIZE (256) and no input signal object (NULL pointer). The copy constructor
SndObj(SndObj& obj) creates a new object based on an existing one, with the same
parameters. The full constructor takes the following arguments:

SndObj* input: an input signal object, whose output will be processed by this object.
int vecsize: object vector size. This is the size of the m_output signal buffer, which holds the
output signal for this object. Defaults to DEF_VECSIZE (256).
float sr: the sampling rate for this object. Defaults to DEF_SR (44100.f).

149

SndObj Library Reference Class SndObj

protected member variables
These variables can only be accessed by methods of this class or other derived classes.

float *m_output: this is the output signal buffer, an array of m_vecsize floats.
SndObj *m_input: this holds the pointer to the input signal object.
float m_sr: the sampling rate.
int m_vecsize: the size of the output signal buffer m_output.
int m_vecpos: an index into the m_output array, which can be used by class methods to
access individual signal samples. For instance, it is used by operator<<(float val), to keep
track of vector position and DoProcess() to step through the array. If m_vecpos is not 0 or
m_vecsize, it is likely that the object is currently processing audio at that moment.
int m_error: error code, which can be used by error checking routines, such as
ErrorMessage().
short m_enable: on/off switch variable. if 0, the processing method is bypassed and the
object outputs 0s (silence).
msg_link *m_msgtable: a pointer to the last item of a linked list containing string messages
and integer IDs, used by the message-passing methods Set() and Connect() to process
messages to objects.

protected methods
These methods can only be invoked by this class or other derived classes.

void AddMsg(char *mess, int ID)

Adds a message string to the object message list, assigning an ID to the message. The null-
terminated (C-type) string mess containins a message to be added to the list and the integer
ID is an arbitrary integer which will be associated with the message.

int FindMsg(char *mess)

This method returns an ID associated with a message string mess, or 0 if it does not find the
message in the message list.

public methods
void Enable()
void Disable()

These two methods are used to bypass (Disable()) or to switch on (Enable()) the processing.
They act on the main perform method, DoProcess(). If the processing is disabled, all
calculations are bypassed and the object will output silence (0s). The class is constructed with
the processing enabled.

float Output(int pos)

This method can be used to access the object output samples directly. The argument pos is
an integral index into the output vector, so it can be anything between 0 and the vector size.

int PopOut(float *vector, int size)

This method retrieves a vector of size size, from the object vector, continuoulsy. Returns an
index to the next vector position immediately after the extracted block.

int AddOut(float* vec, int size)

Same as PopOut(), but adds to the output vector (accumulates), instead of replacing its
samples.

150

SndObj Library Reference Class SndObj

int PushIn(float *vector, int size)

this method pushes a vector of samples (of size size) into the object vector. Returns an index
pointing to the next 'insert' position in the vector.

bool IsProcessing()
int GetVectorSize()
int GetError();
float GetSr()
SndObj* GetInput()
void GetMsgList(string* list)

These methods retrieve the different parameters that make the object state. GetVectorSize()
and GetSr() return the size of the output signal vector and the sampling rate respectively.
GetInput() returns a pointer to the input signal object and GetError() retrieves an error code,
or 0 if no error has occurred. GetMsgList() takes a pointer to an empty string object and fills
it with all the string messages defined for this object, separated by newline characters (‘\n’).
IsProcessing() returns true if the object is processing audio at that instant, that is,
DoProcess() is at work, or false if the object is idle.

virtual void SetSr(float sr)
void SetInput(SndObj *input)
void SetVectorSize(int vecsize)

These methods are used to set the parameters that make the object state. SetSr() and
SetVectorSize() change the sampling rate and output vector size, respectively. They should
be used carefully since they might affect the way the signal is processed. It is important to
note that SetVectorSize() destroys the output array in the process of re-sizing it, so it should
not be used during performance. SetInput() sets the input signal object. It is safe to use in
most situations. SetSr() can be overriden, if the derived class state is dependent on the
values of the sampling rate.

virtual int Set(char *mess, float value)
virtual int Connect(char *mess, void *input)

These two methods are used to process Set and Connect messages sent to the object.
Please refer to list given above (under “Messages”) for valid messages. Set() sets the
parameter associated to the message to value, whereas Connect() connects the input
associated with the message to the object pointed at by input. Both methods return 0 if the
message was not understood.

SndObj operator=(SndObj obj)
SndObj operator+(SndObj& obj)
SndObj operator-(SndObj& obj)
SndObj operator*(SndObj& obj)
SndObj& operator+=(SndObj& obj)
SndObj& operator-=(SndObj& obj)
SndObj& operator*=(SndObj& obj)
SndObj operator+(float val)
SndObj operator-(float val)
SndObj operator*(float val)
SndObj& operator+=(float val)
SndObj& operator-=(float val)
SndObj& operator*=(float val)
void operator>>(SndIO& obj)
void operator<<(SndIO& obj)
void operator<<(float val)
void operator<<(float *vector)

151

SndObj Library Reference Class SndObj

These operators define simple operations on objects such as assignment, sum, difference,
multiplication and shift (<<, >>). Objects can be added, subtracted and multiplied together.
Especially useful are the operation-and-assigment (+=, -= and *=) operators, which work on
the contents of the object output buffer, adding,subtracting or multiplying them by the contents
the output buffer of another object (or by a floating-point scalar value). The shift operators
provide a way of sending/retrieving a signal to/from a SndIO (sound input/output) object. A
shift operator is also provided for filling the output buffer with the contents of a floating-point
vector and for shifting in a floating-point scalar into the buffer. This last operator uses an
internal counter to keep track of the current position and the buffer is treated as a circular
buffer (the counter is incremented modulo vector size).

virtual short DoProcess()

This is the main processing method for the class, also known as the perform method.It
produces a new vector full of samples every time it is invoked (if processing is enabled and
the constructor did not accuse any errors). In the case of this class, the processing is limited
to copying the input samples from an input object to the output. The method returns 1 if
successful and 0 if not. Derived classes typically override this method, implementing it
according to the way they process the audio signals. The only restriction to their
implementation is that the class should produce an output vector of m_vecsize samples and
should return 0 if unsuccesful. Other return values can be defined for special uses.

virtual char* ErrorMessage()

This method is a simple error-checking method which can be useful for debugging purposes.
It returns a string message which relates to an error code issued by one of the class methods
(usually the constructor), in case of an error. So it can be invoked if a class has found errors.
Derived classes can override this method to add error messages if necessary.

Examples
A SndObj object is created using one of its constructors. SndObjs (and derived-type objects)
can be created as static-memory objects:

SndObj sigobj;

or as dynamic-memory objects:

SndObj *sigobj = new SndObj;

The two examples above used the default constructor, but we will recommend the use of the
full constructor whenever possible:

SndObj sigobj(&inobj);

Please note that the parameter inobj needs to be either of type SndObj or of the derived
types. Because the constructor takes a pointer to an object, the address-of operator (&) is
used. In case of pointers, the variable name will suffice (here we call it pinobj):

SndObj sigobj(pinobj);

Messages can be sent to an object to set one of its parameters:

sigobj.Set(“SR”, 48000.f);

or to connect an object into it:

152

SndObj Library Reference Class SndObj

sigobj.Connect(“input”, &inobj);

Once an object has been constructed and its parameters set, we can use it to process sound.
The main perform method is used to produce a vector full of output samples. This is usually
placed in a loop, as in:

while(processing_on) {

sigobj.DoProcess();

}

Here the object will continually produce signal vectors, which can be further processed or sent
to an object of an output class. When using the class SndThread to manage the processing,
there is no need to invoke the DoProcess() method (see the Class SndThread manual page
for details).

The object output can be accessed by using the Output() method. This is the standard way
for derived classes to get the input signal. A pointer to the input object is held by the m_input
variable, so the following code will access the signal input (and copy it to the output) :

for(m_vecpos=0; m_vecpos< m_vecsize; m_vecpos++)
 m_output[m_vecpos] = m_input->Output(m_vecpos);

There are also other ways of manipulating the object output, using the defined overloaded
operators. For instance, the operators + and = can be used to mix objects:

while(processing_on) {

sigobj1.DoProcess;
sigobj2.DoProcess;
sigobj3.DoProcess;

sumobj = sigobj1 + sigobj2 + sigobj3;

}

A simple way of combing objects is found using the *=, += and -= operators:

while(processing_on) {

sigobj1.DoProcess;
sigobj2 *= sigobj1;

}

The shift operators can be used to get and send signals:

float a[DEF_VECSIZE];
SndObj sigobj;
SndIO outobj;

(…)

while(processing_on){

sigobj << a;
sigobj >> outobj;

153

SndObj Library Reference Class SndObj

}

The shift operator defined for a scalar can be used to shift in single values:

for(int n=0, float a=1.f; n < sigobj.GetVectorSize(); n++) sigobj << a*n;

Most operators will work on derived classes as well, except for =, +, - and * (but += etc will
do).

154

Class SndPVOCEX

Description
This class implements file IO to a PVOCEX-format file. This file format is designed for phase
vocoder and spectral data IO.

Construction
SndPVOCEX(char* name, short mode = OVERWRITE,
 int analformat=PVOC_AMP_FREQ, int windowtype=HANNING,
 short channels=1, int channelmask=0, short bits=32,
 int format=PCM, SndObj** inputlist=0,
 float framepos= 0.f, int hopsize = DEF_VECSIZE,
 int fftsize = DEF_FFTSIZE, float sr = DEF_SR)

Public Methods
int GetFFTSize()
int GetHopSize()
int GetWindowType()
int GetWindowLength()
void GetHeader(WAVEFORMATPVOCEX* pheader);
void SetTimePos(float pos);
bool IsPvocex()

Details

construction
SndPVOCEX(char* name, short mode = OVERWRITE,
 int analformat=PVOC_AMP_FREQ, int windowtype=HANNING,
 short channels=1, int channelmask=0, short bits=32,
 int format=PCM, SndObj** inputlist=0,
 float framepos= 0.f, int hopsize = DEF_VECSIZE,
 int fftsize = DEF_FFTSIZE, float sr = DEF_SR)

char* name: input/output file name.
short mode: file open mode. One of the four options: OVERWRITE, APPEND,INSERT or
READ. The first three open the file for writing (output), the last one opens it for reading (input).
int analformat: analysis format type, either PVOC_AMP_FREQ (amplitude and frequency)
PVOC_AMP_PHASE (polar format) or PVOC_COMPLEX (rectangular)
int windowtype: analysis window shape, HANNING, HAMMING, KAISER, CUSTOM or
RECTANGULAR.
short channels: number of output channels.
int channelmask: channel mask identifying the multichannel format used (for multichannel
output). This is a series of descriptors for the channels used in the multichannel encoding,
which are or’ed (|) together (any combination from this set of 16):

SPEAKER_FRONT_LEFT
SPEAKER_FRONT_RIGHT
SPEAKER_FRONT_CENTER
SPEAKER_LOW_FREQUENCY
SPEAKER_BACK_LEFT
SPEAKER_BACK_RIGHT
SPEAKER_FRONT_LEFT_OF_CENTER
SPEAKER_FRONT_RIGHT_OF_CENTER

155

SndObj Library Reference Class SndPVOCEX

SPEAKER_BACK_CENTER
SPEAKER_SIDE_LEFT
SPEAKER_SIDE_RIGHT
SPEAKER_TOP_CENTER
SPEAKER_TOP_FRONT_LEFT
SPEAKER_TOP_FRONT_CENTER
SPEAKER_TOP_FRONT_RIGHT
SPEAKER_TOP_BACK_LEFT
SPEAKER_TOP_BACK_CENTER
SPEAKER_TOP_BACK_RIGHT
SPEAKER_RESERVED

short bits: number of bits per sample (sample size). Since this class implements input from a
self-describing format, in the READ mode the sample precision will be obtained from the
soundfile header. 32 bits here actually mean float samples. 64 bits would set the output
format to double precision.
int format: time-domain format, PCM is currently the only format supported.
SndObj** inputlist: array of pointers to locations of SndObj-derived objects, which will be
patched to the output channels.
float framepos: start position of the read/write pointer, in seconds from the beginning of the
sound data.
int fftsize: fft analysis size, also the window size (current implementation only supports
windows of the same size as the spectral frame).
int hopsize: hopsize in samples between analysis windows.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f. Since this class implements input
from a self-describing format, in the READ mode the sampling rate will be obtained from the
soundfile header

public methods
int GetFFTSize()
int GetHopSize()
int GetWindowType()
int GetWindowLength()

These methods return information relating to the formatting of the spectral analysis data, fft
size, hopsize, window type and length.

void GetHeader(WAVEFORMATPVOCEX* pheader);

This returns the spectral file header as a single structure:

struct pvoc_data {
 short wWordFormat; /* IEEE_FLOAT or IEEE_DOUBLE */
 short wAnalFormat; /*PVOC_AMP_FREQ, PVOC_AMP_PHASE, PVOC_COMPLEX */
 short wSourceFormat; /* WAVE_FORMAT_PCM or WAVE_FORMAT_IEEE_FLOAT*/
 short wWindowType; /* defines the standard analysis window used, or a custom window */
 int nAnalysisBins; /* number of analysis channels. */
 int dwWinlen; /* analysis window length, in samples */
 int dwOverlap; /* window overlap length in samples (decimation) */
 int dwFrameAlign; /* usually nAnalysisBins * 2 * sizeof(float) */
 float fAnalysisRate; /* sample rate / Overlap */
 float fWindowParam; /* parameter associated with some window types: default 0.0f unless
needed */
};

struct pvocex{
 int dwVersion; /* initial version is 1*/
 int dwDataSize; /* sizeof PVOCDATA data block */

156

SndObj Library Reference Class SndPVOCEX

 pvoc_data data; /* 32 byte block */
};

struct WAVEFORMATPVOCEX {

wave_head waveformatex;
wav_ex waveformat_ext;
pvocex pvocformat_ext;

};

For a description of the wave_head and wav_ex structures, see the reference page for the
SndWaveX class.

void SetTimePos(float pos);

This sets a position along the file for the read/write pointer, in seconds from the beginning of
the file.

bool IsPvocex()

Checks if the file is of the PVOCEX format.

157

Class SndRead

Description
This class implement s direct file readout from either RIFF-Wave or AIFF-format files. File
format is determined by the filename extension: “.wav” for Wave format and “.aif” for AIFF.
SndRead objects can be used to play files at any speed.

Construction
SndRead();
SndRead(char* name, float pitch=1.f, float scale=1.f,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
SndObj* Outchannel(int channel)
void SetInput(char* name)
void SetScale(float scale)
void SetPitch(float pitch)

Messages
[set] “pitch”
[set] “scale”

Details

construction
SndRead();
SndRead(char* name, float pitch=1.f, float scale=1.f,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the SndRead class:

char* name: input filename. Formats accepted are RIFF-Wave and AIFF, which are
determined by the filename extension (“.wav”) or (“.aif”).
float pitch: readout pitch (or speed).
float scale: amplitude scaling factor.
int vecsize: object vector size, defaults to 256.
float sr: sampling rate, defaults to 44100.

public methods
void SetInput(char* name)
void SetScale(float scale)
void SetPitch(float pitch)

These methods set the input file and object parameters. The latter can be also set with the
messages listed above

SndObj* Outchannel(int channel)

For multichannel files, this method returns the SndObj pointer associated with a particular
channel. The object pointer can then be used to obtain the individual output of each channel.
For instance,

SndObj* channel2 = fileread.Outchannel(2);

158

SndObj Library Reference Class SndRead

output.SetOutput(2, channel2);

Examples
SndRead objects read directly from files (using internal SndIO-derived objects), as such they
can easily manipulate the readout speed to provide transformations of pitch, etc.. File formats
are defined by the filename extension:

SndRead aiffile(“sound.aif”, 1.25f);
SndRead wavefile(“sound.wav”, 0.75f);

In the examples above, the two SndRead objects are transposing the input files (a major third
above and a perfect fifth below). The length of the soundfiles will of course be altered. If the
file is multichannel, a SndRead object will hold the mono sum of all channels. Individual
channels can be accessed as discussed above

while(processing_on){

aifile.DoProcess();
wavefile.DoProcess();
mixer.DoProcess();
output.Write();

}

159

Class SndRTIO

Description
The SndRTIO class implements realtime audio device input/output. It has been currently
implemented on five platforms: OSS (Linux, etc.), ALSA (Linux), Irix (SGI), MacOSX
(CoreAudio) and MS-Windows (Windows Multimedia Extensions audio).

Construction
OSS [-DOSS]:
SndRTIO(short channels, int mode, int buffsize = 512,
 int DMAbuffsize = 512, int encoding = SHORTSAM_LE, SndObj** inputs = 0,
 int vecsize = DEF_VECSIZE, float sr=DEF_SR, char* device = "/dev/dsp")

ALSA [-DALSA]:
SndRTIO(short channels, int mode, int buffsize = 512,
 int buffno=4, int encoding = SHORTSAM_LE, SndObj** inputs = 0,
 int vecsize = DEF_VECSIZE, float sr=DEF_SR, char* device = "plughw:0,0")

SGI [-DSGI]:
SndRTIO(short channels, int mode, int buffsize = 512,
 int DACqueue = 512, int encoding = SHORTSAM, SndObj** inputs=0,
 int vecsize = DEF_VECSIZE, float sr=DEF_SR, int dev=AL_DEFAULT_OUTPUT)

OSX [-DMACOSX]:
SndRTIO(short channels, int mode, int buffsize = 512,
 int buffno = 10, int encoding = SHORTSAM, SndObj** inputs=0,
 int vecsize = DEF_VECSIZE, float sr=DEF_SR,
 AudioDeviceID dev = DEFAULT_DEV)

Windows MME (-DWIN):
SndRTIO(short channels, int mode, int buffsize = 128,
 int buffno = 10, int encoding = SHORTSAM, SndObj** inputs=0,
 int vecsize = DEF_VECSIZE, float sr=DEF_SR, int dev = WAVE_MAPPER)

Details

construction
SndRTIO(short channels, int mode, int buffsize = 512,
 int DMAbuffsize = 512, int encoding = SHORTSAM_LE, SndObj** inputs = 0,
 int vecsize = DEF_VECSIZE, float sr=DEF_SR, char* device = "/dev/dsp")
SndRTIO(short channels, int mode, int buffsize = 512,
 int buffno=4, int encoding = SHORTSAM_LE, SndObj** inputs = 0,
 int vecsize = DEF_VECSIZE, float sr=DEF_SR, char* device = "plughw:0,0")
SndRTIO(short channels, int mode, int buffsize = 512,
 int DACqueue = 512, int encoding = SHORTSAM, SndObj** inputs=0,
 int vecsize = DEF_VECSIZE, float sr=DEF_SR, int dev=AL_DEFAULT_OUTPUT)
SndRTIO(short channels, int mode, int buffsize = 512,
 int buffno = 10, int encoding = SHORTSAM, SndObj** inputs=0,
 int vecsize = DEF_VECSIZE, float sr=DEF_SR,
 AudioDeviceID dev = DEFAULT_DEV)
SndRTIO(short channels, int mode, int buffsize = 128,
 int buffno = 10, int encoding = SHORTSAM, SndObj** inputs=0,
 int vecsize = DEF_VECSIZE, float sr=DEF_SR, int dev = WAVE_MAPPER)

160

SndObj Library Reference Class SndRTIO

These methods construct an object of the SndRTIO class on the different supported
platforms. Common Construction parameters are:

short channels: number of output channels.
int encoding: sample encoding, one of the following: FLOATSAM (floats, only on Irix),
BYTESAM (8-bit), SHORTSAM_LE (16-bit little-endian, also SHORTSAM on WIN/OSS),
SHORTSAM_BE (16-bit big-endian, also SHORTSAM on Irix), LONGSAM (32-bit integers,
only on Irix). Defaults to SHORTSAM.
int buffsize: size of the read/write buffer implemented to optimise the operation (in frames).
This is independent from the object output vector.
SndObj** inputs: array of pointers to locations of SndObj-derived objects, which will be
patched to the output channels.
int vecsize: vector size in samples. Size of the internal DSP buffer, relevant only to INPUT
mode, defaults to DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

Platform specific:

[OSS]
short mode: SND_INPUT or SND_OUTPUT.
int DMAbuffsize: size of the DMA buffer used in the operation.
char* device: input/output device used (normally one of the /dev/dsp or /dev/audio files listed
in the /dev directory).

[ALSA]
short mode: SND_INPUT or SND_OUTPUT.
int buffno: number of hardware buffers (in alsa terminology, periods).
char* device: input/output device used (“plughw:0,0”)

[SGI]
short mode: SND_INPUT or SND_OUTPUT.
int DACqueue: size of the input/output device hardware queue.
int dev: input/output device, defaults to AL_DEFAULT_OUTPUT.

[OSX]
short mode: SND_INPUT, SND_OUTPUT or SND_IO. Some soundcards will not allow being
opened for input and output separately, so a single object should be used for reading AND
writing, using SND_IO. This is the case with builtin audio. Alternatively the SndCoreAudio
class can be used.
int buffno: number of software buffers.
AudioDeviceID dev: the CoreAudio device ID, usually an integer, zero being the first device.
It defaults to default output device (set in system preferences).

[WIN]
short mode: SND_INPUT or SND_OUTPUT.
int buffno: number of input/output buffers used.
int dev: input/output device ID, defaults to WAVE_MAPPER, the device set at the Windows
multimedia control panel. The number of devices and their names can be retrieved using
three utility functions provided by this library:

void DeviceList(): lists all present devices on the standard output.
char* InputDeviceName(int dev, char* name)
char* OutputDeviceName(int dev, char* name): retrieves the name of a device with device
ID dev, placing it into the string name. This string should be of MAXPNAMELEN size, at
least. Both functions return the device name. A NULL pointer (0) is returned if the device ID is
not valid. The sample code below will list all input devices on the standard output:

161

SndObj Library Reference Class SndRTIO

char name[MAXPNAMELEN];
int j = 0;
while(InputDeviceName(j, name)){
cout << name << "\n";
j++;
}

Examples
A SndRTIO object can be used to read or write to an audio device:

SndRTIO input(1, SND_INPUT);
SndRTIO output(1, SND_OUTPUT);

The only exception is that on OSX, some CoreAudio devices do not like to be opened for
reading and writing separately, so a single object is used:

SndRTIO coreaudio(1, SND_IO);

The object behaves like any other SndIO object, calls to Read() and Write() are used to effect
the IO operations. The output SndObj is set like this:

output.SetOutput(1, &outobj);

or

coreaudio.SetOutput(1, &outobj);

in the case of the coreaudio object shown above. The buffersizes and buffer numbers can be
adjusted to avoid drop-outs, which might occur depending on the capabilities of a particular
system. Larger values will of course affect the latency of the processing.

Class SndSinIO

Description
This class implements file IO to a SINUSEX-format file. This file format is designed for
sinusoidal analysis track data.

Construction
SndSinIO(char* name, int maxtracks, float threshold=0.01f, int windowtype=HANNING,
 short mode = OVERWRITE, short channels=1, int channelmask=0, short bits=32,
 int format=PCM, SndObj** inputlist=0, float framepos= 0.f,
 int hopsize = DEF_VECSIZE, int fftsize = DEF_FFTSIZE, float sr = DEF_SR)

Public Methods
int GetTrackID(int track, int channel)
int GetTracks(int channel)
int GetFFTSize()
int GetHopSize()
int GetWindowType()
int GetMaxTracks()
void GetHeader(WAVEFORMATSINUSEX* pheader)

162

SndObj Library Reference Class SndSinIO

void SetTimePos(float pos)

Details

construction
SndSinIO(char* name, int maxtracks, float threshold=0.01f, int windowtype=HANNING,
 short mode = OVERWRITE, short channels=1, int channelmask=0, short bits=32,
 int format=PCM, SndObj** inputlist=0, float framepos= 0.f,
 int hopsize = DEF_VECSIZE, int fftsize = DEF_FFTSIZE, float sr = DEF_SR)

char* name: input/output file name.
int maxtracks: maximum number of tracks per frame.
float threshold: analysis threshold
int windowtype: analysis window shape, HANNING, HAMMING, KAISER, CUSTOM or
RECTANGULAR.
short mode: file open mode. One of the four options: OVERWRITE, APPEND,INSERT or
READ. The first three open the file for writing (output), the last one opens it for reading (input).
short channels: number of output channels.
int channelmask: channel mask identifying the multichannel format used (for multichannel
output). This is a series of descriptors for the channels used in the multichannel encoding,
which are or’ed (|) together (any combination from this set of 16):

SPEAKER_FRONT_LEFT
SPEAKER_FRONT_RIGHT
SPEAKER_FRONT_CENTER
SPEAKER_LOW_FREQUENCY
SPEAKER_BACK_LEFT
SPEAKER_BACK_RIGHT
SPEAKER_FRONT_LEFT_OF_CENTER
SPEAKER_FRONT_RIGHT_OF_CENTER
SPEAKER_BACK_CENTER
SPEAKER_SIDE_LEFT
SPEAKER_SIDE_RIGHT
SPEAKER_TOP_CENTER
SPEAKER_TOP_FRONT_LEFT
SPEAKER_TOP_FRONT_CENTER
SPEAKER_TOP_FRONT_RIGHT
SPEAKER_TOP_BACK_LEFT
SPEAKER_TOP_BACK_CENTER
SPEAKER_TOP_BACK_RIGHT
SPEAKER_RESERVED

short bits: number of bits per sample (sample size). Since this class implements input from a
self-describing format, in the READ mode the sample precision will be obtained from the
soundfile header. 32 bits here actually mean float samples. 64 bits would set the output
format to double precision.
int format: time-domain format, PCM is currently the only format supported.
SndObj** inputlist: array of pointers to locations of SndObj-derived objects, which will be
patched to the output channels.
float framepos: start position of the read/write pointer, in seconds from the beginning of the
sound data.
int fftsize: fft analysis size, also the window size (current implementation only supports
windows of the same size as the spectral frame).
int hopsize: hopsize in samples between analysis windows.

163

SndObj Library Reference Class SndSinIO

float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f. Since this class implements input
from a self-describing format, in the READ mode the sampling rate will be obtained from the
soundfile header

public methods
int GetTrackID(int track, int channel)
int GetTracks(int channel)
int GetMaxTracks()

These two methods retrieve two important sinuosoidal analysis parameters, a track ID, which
is used to identify and match tracks between frames (see the reference on SinAnal, SinSyn
and AdSyn) and the current number of tracks for a particular channel. The number of tracks
can possibly vary from frame to frame as old tracks can die and new ones can be created.
GetMaxTracks() retrieves the maximum number of tracks possible in each frame.

int GetFFTSize()
int GetHopSize()
int GetWindowType()
int GetWindowLength()

These methods return information relating to the formatting of the spectral analysis data, fft
size, hopsize, window type and length.

void GetHeader(WAVEFORMATSINUSEX* pheader);

This returns the spectral file header as a single structure:

struct sinus_data {
 short wWordFormat;
 short wHopsize;
 short wWindowType;
 short wMaxtracks;
 int dwWindowSize;
 float fThreshold;
 float fAnalysisRate;
};

struct sinusex {

int dwVersion;
sinus_data data;

};

struct WAVEFORMATSINUSEX {

wave_head waveformatex;
wav_ex waveformat_ext;
sinusex sinusformat_ext;

};

For a description of the wave_head and wav_ex structures, see the reference page for the
SndWaveX class.

void SetTimePos(float pos);

164

SndObj Library Reference Class SndSinIO

This sets a position along the file for the read/write pointer, in seconds from the beginning of
the file.

165

SndObj Library Reference Class SndTable

Class SndTable

Description
The SndTable object builds a function table based on the output of a SndFIO-derived object.
It can be used to store one channel of previously recorded sound samples on a table for
synthesis/processing purposes. The sound samples are normalised as they are inserted on
the table.

Construction
SndTable()
SndTable(long L, SndFIO* input, short channel =1)

Public Methods
void SetInput(long L, SndFIO* input, short channel =1)

Details

construction
SndTable()
SndTable(long L, SndFIO* input, short channel =1)

Constructs a SndTable object.

long L: table length.
SndFIO* input: input sound, pointer to the location of a SndFIO-derived object (soundfile
input).
short channel: channel from which the sound samples will be extracted

public methods
void SetInput(long L, SndFIO* input, short channel =1)

This method sets the function table parameters. MakeTable() should be invoked after any
parameter resetting.

166

Class SndThread

Description
The SndThread class implements a processing pthread-based thread for SndObj and SndIO -
derived objects. The class implements three lists of objects which are used by the processing
thread to generate audio signals. Two of these lists hold pointers to SndIO-derived objects
(the SNDIO_IN, for input objects and the SNDIO_OUT, for output objects). The third list holds
pointers to SndObj-derived objects. Methods for adding, inserting and deleting objects to
these lists are provided. Processing can be turned on or off by the ProcOn() and ProcOff()
methods, respectively.

Construction
SndThread()

Public Methods
int AddObj(SndObj *obj)
int AddObj(SndIO *obj, int iolist)
int Insert(SndObj *obj, SndObj* prev)
int DeleteObj(SndObj *obj)
int DeleteObj(SndIO *obj, int iolist)
int GetStatus()
int GetSndObjNo()
int GetInputNo()
int GetOutputNo()
int ProcOn()
int ProcOff()

Details

construction
SndThread()

Constructs an empty SndThread object.

public methods
int AddObj(SndObj *obj)

Adds a SndObj-derived object to the top of the processing list. Returns 1 if successful and 0 if
not.

int AddObj(SndIO *obj, int iolist)

Adds a SndIO-derived object to the specified IO list (SNDIO_IN or SNDIO_OUT).

For example

sndthread.AddObj(&input, SNDIO_IN);

adds a SndIO-derived object input to the SNDIO_IN list.

int Insert(SndObj *obj, SndObj* prev)

Inserts a SndObj-derived object to a position in the list after the SndObj object pointed by
prev, which will have been previously added to the list.

167

SndObj Library Reference Class SndThread

This is useful to insert objects in the processing list, so that the right order of processing is
obtained. For instance, if obj1 receives input from obj2, then it should be placed in the listafter
obj2. The following call will make sure that this is the case

sndthread.Insert(&obj1, &obj2);

provided, of course, that obj2 has already been added to the thread list. This method returns
the position of the inserted object in the list, if the insertion was succesful, 0 otherwise.

int DeleteObj(SndObj *obj)
int DeleteObj(SndIO *obj, int iolist)

Delete objects from the respective lists. As in AddOBJ(...), the parameter iolist can be either
SNDIO_IN or SNDIO_OUT, the input and the output lists, respectively.

int GetStatus()
int GetSndObjNo()
int GetInputNo()
int GetOutputNo()

These are various methods to get properties of a SndThread object. GetStatus() returns the
processing status (ON or OFF). GetSndObjNo(), GetInputNo() and GetOutputNo() return the
number of objects (actually pointers to objects) held in the processing, input and ouput lists,
respectively

int ProcOn()
int ProcOff()

These methods are use to switch the processing thread on or off. They return the current
processing status (ON or OFF). The ProcOn() will return an OFF status if it fails to start the
processing thread.

Examples
The following example shows the use of a SndThread object to provide a processing thread
for a program:

 char command[10];
 int status;

 // SndObj objects set-up
 HarmTable table1(1024,1,SINE);
 Oscilt mod(&table1, 2.5f, 10000.f);
 Oscili oscil(&table1, 440.f, 10000.f, 0, &mod);
 SndRTIO output(1, OUTPUT);
 output.SetOutput(1, &oscil);

The above shows a typical SndObj-SndIO chain. This chain can be set to process sound
with a user-coded processing loop. Or alternatively as this example demonstrates, with
SndThread:

 // sound thread set-up
 SndThread thread;

 thread.AddObj(&mod); // adds mod to the thread
 thread.Insert(&oscil, &mod); // inserts oscil after oscil2

168

SndObj Library Reference Class SndThread

 thread.AddObj(&output, SNDIO_OUT); // adds output to the out list

Now we can start processing audio. This is controlled by program user, who can start.
interrupt, re-start processing or exit the program at any time:

 // command loop
 while(1){

 cout << "Type a command: on, off or end\n";
 cin >> command;

 if(!strcmp(command, "on"))
 status = thread.ProcOn();// processing ON

 if(!strcmp(command, "off"))
 status = thread.ProcOff();

 if(!strcmp(command, "end")){
 if(status){ // if processing still ON
 status = thread.ProcOff();
 sleep(1);
 }
 break;
 }
 }

169

Class SndWave

Description
The SndWave class implements RIFF-Wave file input/output.

Construction
SndWave(char* name, short mode, short channels=1, short bits=16, SndObj** inputlist=0,
float spos= 0.f, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Details

construction
SndWave(char* name, short mode, short channels=1, short bits=16, SndObj** inputlist=0,
float spos= 0.f, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

This method constructs an object of the SndWave class. Construction parameters are:

char* name: input/output Wave soundfile name.
short mode: file open mode. One of the four options: OVERWRITE, APPEND,INSERT or
READ. The first three open the file for writing (output), the last one opens it for reading (input).
short channels: number of output channels.
short bits: number of bits per sample (sample size). Since this class implements input from a
self-describing format, in the READ mode the sample precision will be obtained from the
soundfile header (8, 16, 24 and 32-bit formats are supported).
SndObj** inputlist: array of pointers to locations of SndObj-derived objects, which will be
patched to the output channels.
float spos: start position of the read/write pointer, in seconds from the beginning of the sound
data.
int vecsize: vector size in samples. Size of the internal read/write buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f. Since this class implements input
from a self-describing format, in the READ mode the sampling rate will be obtained from the
soundfile header.

Examples
SndWave is a specialisation of the SndIO class to deal with WAVE-format files. As such it
takes the signal format information from the soundfile header and it also writes a header with
full details. The output header writing is only complete when an object is destroyed. If the
program fails to kill the object (for instance when a dynamic type is not deleted or when the
program has exited early or crashed), the header will not be properly updated.

SndWave outfile(“output.wav”, OVERWRITE);

The following object can write to a Wave file. A simple raw-format to Wave conversion
program using that object can be written like this:

SndFIO infile(“input.raw”, READ);
SndIn input(&infile, 1);
outfile.SetOutput(1, &input);

while(!infile.Eof()){

infile.Read();
SndIn.DoProcess();

170

SndObj Library Reference Class SndWave

SndWave.DoProcess();

}

171

Class SndWaveX

Description
The SndWaveX class implements RIFF-Wave Extensible format (WAVEFORMATEX) file
input/output.

Construction
SndWaveX(char* name, short mode, short channels=1, int channelmask=0, short bits=16,
SndObj** inputlist=0, float spos= 0.f, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void GetHeader(WAVEFORMATEXTENSIBLE* pheader)
int GetChannelMask()
bool IsWaveExtensible()

Details

construction
SndWaveX(char* name, short mode, short channels=1, int channelmask=0, short bits=16,
SndObj** inputlist=0, float spos= 0.f, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

This method constructs an object of the SndWaveX class. Construction parameters are:

char* name: input/output Wave soundfile name.
short mode: file open mode. One of the four options: OVERWRITE, APPEND,INSERT or
READ. The first three open the file for writing (output), the last one opens it for reading (input).
short channels: number of output channels.
int channelmask: channel mask identifying the multichannel format used (for multichannel
output). This is a series of descriptors for the channels used in the multichannel encoding,
which are or’ed (|) together (any combination from this set of 16):

SPEAKER_FRONT_LEFT
SPEAKER_FRONT_RIGHT
SPEAKER_FRONT_CENTER
SPEAKER_LOW_FREQUENCY
SPEAKER_BACK_LEFT
SPEAKER_BACK_RIGHT
SPEAKER_FRONT_LEFT_OF_CENTER
SPEAKER_FRONT_RIGHT_OF_CENTER
SPEAKER_BACK_CENTER
SPEAKER_SIDE_LEFT
SPEAKER_SIDE_RIGHT
SPEAKER_TOP_CENTER
SPEAKER_TOP_FRONT_LEFT
SPEAKER_TOP_FRONT_CENTER
SPEAKER_TOP_FRONT_RIGHT
SPEAKER_TOP_BACK_LEFT
SPEAKER_TOP_BACK_CENTER
SPEAKER_TOP_BACK_RIGHT
SPEAKER_RESERVED

short bits: number of bits per sample (sample size). Since this class implements input from a
self-describing format, in the READ mode the sample precision will be obtained from the
soundfile header (8, 16, 24 and 32-bit integer formats are supported, plus 64-bit floating-

172

SndObj Library Reference Class SndWaveX

point).
SndObj** inputlist: array of pointers to locations of SndObj-derived objects, which will be
patched to the output channels.
float spos: start position of the read/write pointer, in seconds from the beginning of the sound
data.
int vecsize: vector size in samples. Size of the internal read/write buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f. Since this class implements input
from a self-describing format, in the READ mode the sampling rate will be obtained from the
soundfile header.

public methods
void GetHeader(WAVEFORMATEXTENSIBLE* pheader)

This method retrieves the file format header fields in one single structure. Here’s the
description:

struct wave_head{
 long magic;
 long len0;
 long magic1
 long magic2
 long len;
 short format;
 short nchns;
 long rate;
 long aver;
 short nBlockAlign;
 short size;
 };

struct wav_ex {
 short wValidBitsPerSample;
 int dwChannelMask;
 GUID SubFormat;
};

struct WAVEFORMATEXTENSIBLE {
wave_head waveformatex;
wav_ex waveformat_ext;
};

int GetChannelMask()

This method retrieves the channel mask for multichannel files. It is used to describe the
format encoding of the different channels (see above).

bool IsWaveExtensible()

Checks if the file header describes a Waveformatex file.

Examples
SndWaveX is a specialisation of the SndWave class to deal with WAVE-formatex files. As
such it takes the signal format information from the soundfile header and it also writes a
header with full details. The output header writing is only complete when an object is
destroyed. If the program fails to kill the object (for instance when a dynamic type is not

173

SndObj Library Reference Class SndWaveX

deleted or when the program has exited early or crashed), the header will not be properly
updated.

SndWaveX outfile(“output.wav”, OVERWRITE);

The following object can write to a Wave file. A simple raw-format to Wave conversion
program using that object can be written like this:

SndFIO infile(“input.raw”, READ);
SndIn input(&infile, 1);
outfile.SetOutput(1, &input);

while(!infile.Eof()){

infile.Read();
SndIn.DoProcess();
SndWaveX.DoProcess();

}

174

Class SpecCart

Description
SpecCart converts input spectral frames in the polar format into the cartesian (or rectangular)
format. This is often done before the overlap-add IFFT operation (see IFFT class). The polar
format understood by SpecCart is the one obtained with SpecPolar: each frame consists of
magnitude and phase pairs for each FFT channel (or bin), except for the first two pairs, which
will contain the magnitude of the 0Hz and Nyquist components.

Construction
SpecCart();
SpecCart(SndObj* input, int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

Details

construction
SpecCart();
SpecCart(SndObj* input, int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

This methods construct an object of the SpecCart class:

SndObj* input: a spectral object containing an output in the polar format, as described
above.
int vecsize: vector size, the size of the FFT frame. Defaults to 1024.
float sr: sampling rate in Hz, defaults to 44100.

Examples
SpecCart objects are often used to obtain the rectangular (real, imag) format of an input
signal. This trivial example shows the conenctions for a signal to be converted into a polar
format and then converted back into its original form using a SpecCart object:

FFT spec(&window, &inobj);
SpecPolar magphi(&spec);
SpecCart rectang(&magphi);
IFFT waveform(&window, &rectang);

In real-world examples, we would manipulate the polar format signal in some way before
converting it back. The polar form of spectra is often more musically meaningful than its
rectangular version.

175

Class SpecCombine

Description
SpecCombine objects can combine two inputs to make up a spectrum. It takes an amplitude
input object, which will have a vector size of fftsize/2+1, containing the amplitudes for all
spectral channels, from 0Hz up to the Nyquist (inclusive). This is then combined with a phase
input object, also with a vector size of fftsize/2+1, containing phases for all channels, from 0 to
the Nyquist. The phase of the 0Hz and Nyquist channels, the first and last sample in the
phase input object vector, is always taken to be 0, thus ignored. These two real functions are
combined and transformed into rectangular format frames (in the same format produced by
the FFT class), which can be converted to the time-domain using an IFFT object.

Construction
SpecCombine()
SpecCombine(SndObj* magin, SndObj* phasin,
 int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

Public Methods
void SetPhaseInput(SndObj* phasin)
void SetMagInput(SndObj* magin)

Messages
[connect] “phase input”
[connect] “magnitude input”

Details

construction
SpecCombine()
SpecCombine(SndObj* magin, SndObj* phasin,
 int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

These methods construct a SpecCombine object:

SndObj* magin: magnitude input object, a SndObj-derived object with a vector size of
fftsize/2+1 samples, containing the magnitude spectra of a signal frame-by-frame.
SndObj* phasin: phase input object, similarly with a vector size of fftsize/2+1, which
generates the phase spectral frames.
int vecsize: the object vector size, determining the fftsize of its spectral output.

public methods
void SetPhaseInput(SndObj* phasin)
void SetMagInput(SndObj* magin)

These two methods connect the two inputs of the SpecCombine class. The messages listed
above can be used for the same purpose.

Examples
SpecCombine combines two arbitrary functions, for magnitudes and phases of a signal. It
can be used to create completely new spectra, but it also can be used to reverse the
operation of a SpecSplit object:

176

SndObj Library Reference Class

SpecCombine

FFT spec(&window, &inobj)
SpecSplit split(&spec);
SpecCombine combine(split.magnitude,split.phase);
IFFT waveform(&window, &combine);

In a more useful scenario, the spectrum split by SpecSplit would be transformed by further
processing, before being recombined.

177

Class SpecEnvTable

Description
The SpecEnvTable object builds a frequency response function table based on a spectral
magnitude envelope and a linear phase response. The envelope is defined by a starting point
and two arrays: (1) segment legnths and (2) end points of each segment. The segments can
be either exponential or linear. The table will contain a spectrum consisting of complex pairs
for each positive DFT point, except for the 0Hz and Nyquist points, which are purely real.
Table sizes also determine the DFT size used and generally are set to a power-of-two value.
The spectal table data format is the same employed by the SndObj spectral classes: 0Hz and
Nyquist points, followed by all other spectral points from 1 to N/2 –1. The table values are not
normalised. As a linear phase frequency response, it implies a total delay in samples of (N-
1)/2 (N is the fftsize).

Construction
SpecEnvTable()
SpecEnvTable(long L, int segments, float start,
 float* points, float* lengths,float type = 0.f, float nyquistamp=0.f)

Details

construction
SpecEnvTable()
SpecEnvTable(long L, int segments, float start,
 float* points, float* lengths,float type = 0.f, float nyquistamp=0.f)

Constructs a SpecEnvTable object.

long L: table length.
int segments: number of envelope segments.
float start: starting value of envelope (0 Hz magnitude).
float* points: an array of floats, containing the end values of each segment. Must match the
above number of segments.
float* lengths: an array of floats, containing the lengths of each segment. Must match the
above number of segments. Segment lengths are normalised to the table size (added up and
then each one is divided by that total and multiplied by the table size).
float type: type of curve. Linear = 0, inverse exponential < 0 < exponential.
float nyquistamp: Nyquist magnitude.

178

Class SpecIn

Description
This object receives one channel from a spectral SndFIO-derived object and outputs it in the
SndObj spectral processing chain. The input is usually a PVOCEX object.

Construction
SpecIn()
SpecIn(SndFIO* input, short channel=1)

Public Methods
short SetInput(SndObj* input, short channel, int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

Messages
[set] “channel”
[connect] “input”

Details

construction
SpecIn()
SpecIn(SndFIO* input, short channel=1 int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

These methods construct an object of the SpecIn class. Construction parameters are:

SndFIO* input: pointer to the location of a SndFIO-derived (file input) object, generally a
PVOCEX object.
short channel: audio channel from which a monophonic stream will be read. Defaults to
channel 1.
int vecsize: the output vectorsize, defining the fft frame size, defaults to 1024.
float sr: sampling rate, defaults to 44100.

public methods
short SetInput(SndObj* input, short channel)

This method can be used to set the input object SpecIn will be reading from. The messages
“channel” and “input” can be used to set a channel and an input to read from.

Examples

SpecIn objects are utilities used to interface between spectral SndFIO and SndObj objects.
Most SndObj classes cannot take a direct input from a file or a device, so SndFIO classes are
there to implement these actions. SndObj objects also cannot connect to SndFIO objects, so
the SpecIn class is there to provide this connection:

SndPVOCEX input(“specfile.pvx”,READ);
SpecIn inspec(&input, 1);
PVS synth(&window, &inspec);

In the above example, we are reading the first channel of an input RIFF-Wave file. A
processing loop would look like this:

while(processing_on){

179

SndObj Library Reference Class SpecIn

input.Read();
inspec.DoProcess();
synth.DoProcess();
output.Write();

}

In the case of multichannel input, we would use multiple SpecIn objects:

PVOCEX input(“stereospec.pvx”, READ);
SpecIn left_channel_spec(&input, 1);
SpecIn right_channel_spec(&input, 2);

Each SpecIn then would output the data from each respective input channel.

180

Class SpecInterp

Description
This class performs simple interpolation of two spectra, according to an interpolation value,
set between 0 and 1. The class does not make any assumption about the format of the input,
as it interpolates each element of the input objects output frames using the same interpolation
values. As such, the input can be in rectangular, polar or PV format, but generally the most
effective results will be with PV inputs.

Construction
SpecInterp()
SpecInterp(float i_offset, SndObj* input1, SndObj* input2, SndObj* interpobj=0,
 int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

Public Methods
void SetInterp(float i_offset, SndObj* interpobj=0)

Messages
[set, connect] “interpolation”

Details

construction
SpecInterp()
SpecInterp(float i_offset, SndObj* input1, SndObj* input2, SndObj* interpobj=0,
 int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

These methods construct and object of the SpecInterp type:

float i_offset: interpolation amount offset value, which is added to the interpolation input
object signal. Combined interpolation amounts above 1 or below 0 are clipped to those
values. 0 takes the signal from input1 and 1 takes the signal from input2, values in between
interpolate.
SndObj* input1, input2: input spectral objects.
SndObj* interpobj: input interpolation amount object, generating a time-varying signal that
controls the interpolation amount.
int vecsize: object vectorsize, equivalent to the FFT frame size, defaults to 1024.
float sr: sampling rate, in Hz (defaults to 44100).

public methods
void SetInterp(float i_offset, SndObj* interpobj=0)

Sets the interpolation amount and/or connects to the interpolation amount control object.
The message “interpolation” can also be used for the same purpose.

Examples
The SpecInterp provides a simple interpolation operation for spectra:

PVA spec1(&window, &inobj1);
PVA spec2(&window, &inobj2);
SpecInterp interp(0.5f, &spec1, &spec2);
PVS synth(&window, &interp);

181

SndObj Library Reference Class SpecInterp

The example above interpolates the two spectra. In this case, amplitudes and frequencies are
interpolated by the same amount. For individual interpolation of each parameter, see
PVMorph.

Class SpecMult

Description
This class implements a complex multiplication of two spectra in rectangular format (with the
real parts of 0Hz and Nyquist forming the first pair in the frame). This is almost equivalent to
the time-domain convolution of two sounds, except that, because of the nature of the STFT
analysis, the ‘tail’ of the convolution is discarded. SpecMult objects can be used for filtering
and cross-synthesis purposes. The second input spectrum can be a time-varying signal from
a SndObj or a single-frame spectrum stored in a Table-derived object (of fftsize length
containing a rectangular spectral frame in a real fft format).

Construction
SpecMult()
SpecMult(SndObj* input1, SndObj* input2, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)
SpecMult(Table* spectab, SndObj* input1, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)

Public Methods
void SetInput2(SndObj* input2)
void SetTable(Table *spectab)

Messages
[connect] “input 2”
[connect] “table”

Details

construction
SpecMult()
SpecMult(SndObj* input1, SndObj* input2, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)
SpecMult(Table* spectab, SndObj* input1, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)

These methods construct and object of the SpecMult type:

SndObj* input1, input2: input spectral objects whose output is in rectangular format.
Table* spectab: Table-derived object containing a single real fft frame in rectangular format
(fftsize/2 re and im pairs, with the first pair being re[0Hz] and re[SR/2]).
int vecsize: object vectorsize, equivalent to the FFT frame size, defaults to 1024.
float sr: sampling rate, in Hz (defaults to 44100).

public methods
void SetInput2(SndObj* input2)

This is used to set the second input signal object, with the same effect as the connect
message “input 2”. When invoked, this sets the second input to be read from a SndObj
instead of a Table object.

182

SndObj Library Reference Class SpecMult

void SetTable(Table *spectab)

This is used to set the input table object, with the same effect as the connect message
“table”. When invoked, this sets the second input to be read from a Table object instead of a
SndObj.

Examples

Two spectra can be ‘crossed’ with each other by multiplication. This emphasizes the common
components and eliminates the ones that differ:

FFT spec1(&window, &inobj1);
FFT spec2(&window, &inobj2);
SpecMult cross(&spec1, &spec2);
IFFT waveform(&window, &cross);

183

Class SpecPolar

Description
SpecPolar objects convert rectangular spectra in the FFT format (see class FFT) to the polar
format, consisting of magnitude and phase pairs. The only exception is the first pair of values
in the FFT frame which contains the 0Hz and Nyquist magnitudes, respectively. SpecPolar
output can be converted back into rectangular (or cartesian) format by SpecCart objects.

Construction
SpecPolar()
SpecPolar(SndObj* input,int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

Details

construction
SpecPolar()
SpecPolar(SndObj* input,int vecsize=DEF_FFTSIZE, float sr=DEF_SR)

These methods construct and object of the SpecPolar type:

SndObj* input1: input spectral object, generating output in rectangular format.
int vecsize: object vectorsize, equivalent to the FFT frame size, defaults to 1024.
float sr: sampling rate, in Hz (defaults to 44100).

Examples
SpecPolar objects are often used to obtain the polar (magnitude, phase) format of an input
signal. This trivial example shows the conenctions for a signal to be converted into a polar
format using SpecPolar and then converted back into its original form:

FFT spec(&window, &inobj);
SpecPolar magphi(&spec);
SpecCart rectang(&magphi);
IFFT waveform(&window, &rectang);

In real-world examples, we would manipulate the polar format signal in some way before
converting it back. The polar form of spectra is often more musically meaningful than its
rectangular version.

184

Class SpecSplit

Description
This class splits a spectral input singal (in rectangular format) into two outputs, consisting of
magnitudes and phases of the signal. These outputs are presented separately, through
member SndObj objects and together in the output vector. The output vector has to be
fftsize+2 samples long, and it contains the amplitudes of all FFT channels, from 0 to the
Nyquist (inclusive) followed by the phases, ordered similarly. The phases for channel 0 (0
Hz)and channel fftsize/2 (Nyquist) are always 0.

Construction
SpecSplit()
SpecSplit(SndObj* input,int vecsize=DEF_FFTSIZE+2, float sr=DEF_SR)

Public Members
SndObj* magnitude
SndObj* phase

Details

construction
SpecSplit()
SpecSplit(SndObj* input,int vecsize=DEF_FFTSIZE+2, float sr=DEF_SR)

SndObj* input1: input spectral object, generating output in rectangular format.
int vecsize: object vectorsize, equivalent to the FFT frame size, defaults to 1026
(DEF_FFTSIZE+2).
float sr: sampling rate, in Hz (defaults to 44100).

public members
SndObj* magnitude
SndObj* phase

These two pointers to SndObj objects provide acess to the magnitudes and phases,
individually. These objects have output vectors that are fftsize/2+1samples long (vecsize/2).
Any object taking them as input should have vectors that match that size.

Examples
SpecSplit extracts the magnitude and phase of an input spectrum:

FFT spec(&window, &inobj)
SpecSplit split(&spec);
SpecCombine combine(split.magnitude,split.phase);
IFFT waveform(&window, &combine);

In a more useful scenario, the spectrum split by SpecSplit would be transformed by further
processing, before being recombined.

185

Class SpecThresh

Description
The class SpecThresh implements a simple thresholding process, which eliminates all
components of the spectrum below a certain threshold (0-1). It takes an input in rectangular
format (re, im: as produced by the FFT class, for instance) and outputs a thinner spectrum, in
the same format. For each input frame, the maximum amplitude is found and then the
components whose amplitude is below the threshold*max are eliminated

Construction
SpecThresh()
SpecThresh(float threshold, SndObj* input, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)

Public Methods
void SetThreshold(float thresh)

Messages
[set] “threshold”

Details

construction
SpecThresh()
SpecThresh(float threshold, SndObj* input, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)

These methods construct and object of the SpecInterp type:

float thresh: threshold, between 0 and 1, components with amplitude below the threshold are
eliminated.
SndObj* input1: input spectral object, generating output in rectangular format.
int vecsize: object vectorsize, equivalent to the FFT frame size, defaults to 1024.
float sr: sampling rate, in Hz (defaults to 44100).

public methods
void SetThreshold(float thresh)

This sets the threshold value, the same as sending the message “threshold” to Set().

Examples
The following example shows the connections for a process that would eliminate all
components that are below 1% of the maximum amplitude of each frame:

FFT spec(&window, &inobj);
SpecPolar thresh(0.01, &spec);
IFFT waveform(&window, &thresh);

186

Class SpecVoc

Description
SpecVoc objects take two rectangular spectral inputs and ouput a spectral signal in
rectangular format, consisting of the magnitudes of the first spectral input and the phases of
the second. This is moreor less the spectral equivalent of the time-domain channel vocoder.

Construction
SpecVoc();
SpecVoc(SndObj* input, SndObj* input2, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)

Details

construction
SpecVoc();
SpecVoc(SndObj* input, SndObj* input2, int vecsize=DEF_FFTSIZE,
 float sr=DEF_SR)

These methods construct and object of the SpecVoc type:

SndObj* input1: input spectral object (output in rectangular format) from which the amplitudes
will be extracted.
SndObj* input2: input spectral object (output in rectangular format) from which the phases will
be extracted (phases can be thought of as the frequencies of each spectral component).
int vecsize: object vectorsize, equivalent to the FFT frame size, defaults to 1024.
float sr: sampling rate, in Hz (defaults to 44100)

Examples

Two spectra can be combined with each other using SpecVoc. The amplitudes of the first
input will modulate the phases (frequencies) of the other. This resembles the operation of the
classic vocoder.

FFT spec1(&window, &inobj1);
FFT spec2(&window, &inobj2);
SpecVoc vocoder(&spec1, &spec2);
IFFT waveform(&window, &vocoder);

Class StringFlt

Description
The StringFlt object is a basic string resonator, built with a combination of comb, allpass and
lowpass filters. Its parameters include filter (string) frequency (freq. offset and freq. control
input object), feedback gain or decay factor and input object.

Construction
StringFlt()
StringFlt(float fr, float fdbgain, SndObj* InObj, SndObj* InFrObj = 0,

int vecsize=DEF_VECSIZE, float sr=DEF_SR)

187

SndObj Library Reference Class StringFlt

StringFlt(float fr, SndObj* InObj, float decay, SndObj* InFrObj = 0,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetFreq(float fr, SndObj* InFrObj=0)
void SetDecay(float decay)
void SetFdbgain(float fdbgain)

Messages
[set, connect] “frequency”
[set] “feedback gain”
[set] “decay factor”

Details

construction
StringFlt()
StringFlt(float fr, float fdbgain, SndObj* InObj, SndObj* InFrObj = 0,
int vecsize=DEF_VECSIZE, float sr=DEF_SR)
StringFlt(float fr, SndObj* InObj, float decay, SndObj* InFrObj = 0,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the StringFlt class. Construction parameters are:

float fr: frequency offset, in Hz. The frequency of the filter is equivalent to that of
sympathetically vibrating string.
float fdbgain: gain factor of the internal comb filter, which will rescale the signal before it re-
enters the delay line. Normally < 1, anything over 1 will cause the signal to continually grow,
with possibly disastrous results. Different frequencies will have different decay times for the
same value of feedback gain.
float decay: alternatively, the third constructor constructs an object whose decay factor can
be directly controlled. The decay factor is given in dB/sec. This allows for stretching as well as
shortening the decay, as well as maintaining the same decay time across all frequencies.
SndObj* InObj: input object, pointer to the location of a SndObj-derived class.
SndObj* InFrObj: frequency control input, pointer to the location of a SndObj-derived class.
The fundamental frequency can be controlled by a time-varying signal from another SndObj-
derived object. A signal is fed from the input object and added to the frequency offset value.
Defaults to 0, no frequency input object
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetFreq(float fr, SndObj* InFrObj=0)
void SetFdbgain(float fdbgain)
void SetDecay(float decay)

These methods set/connect the two main parameters of the object: frequency and internal
comb filter feedback gain. The messages listed above can also be used for these purposes. If
SetDecay() is used, setting the feedback gain directly will have no effect.

188

SndObj Library Reference Class StringFlt

Examples

The streson program (src/examples/streson.cpp) shows a complete example of the
application of string filters:

StringFlt** strings = new StringFlt*[nstrs];
for(i=0;i<nstrs; i++)
 strings[i] = new StringFlt(fr[i], sound, decay, 0, DEF_VECSIZE, sr);

The program sets a user-defined number of strings. These are then mixed and sent to the
output. The processing loop looks like this:

for(n=0; n < end; n++){

 input->Read(); // input from ADC
 sound->DoProcess(); // sound input
 for(i=0; i < nstrs; i++){
 strings[i]->DoProcess(); // string filters
 }

 mix->DoProcess(); // mixer
 atten->DoProcess(); // attenuation
 output->Write();

 }

189

Class SyncGrain

Description
The SyncGrain class implements synchronous granular synthesis. The source sound for the
grains is obtained by reading a function table containing the samples of the source waveform
(use SndTable for sampled-sound or one of the wave-drawing tables for standard
waveforms). The grain generator has full control of frequency (grains/sec), overall amplitude,
grain pitch (a sampling increment) and grain size (in secs), both as fixed or time-varying
(signal) parameters. An extra parameter is the grain pointer speed (or rate), which controls
which position the generator will start reading samples in the table for each successive grain.
It is measured in fractions of grain size, so a value of 1 (the default) will make each
successive grain read from where the previous grain should finish. A value of 0.5 will make
the next grain start at the midway position from the previous grain start and finish, etc.. A
value of 0 will make the generator read always from the start of the table. This control gives
extra flexibility for creating timescale modifications in the resynthesis.

SyncGrain will generate any number of parallel grain streams (which will depend on grain
density/frequency), up to the olaps value (default 100). The number of streams (overlapped
grains) is dtermined by grainsize*grain_freq. More grain overlaps will demand more
calculations and the synthesis might not run in realtime (depending on processor power).

SyncGrain can simulate FOF-like formant synthesis, provided that a suitable shape is used
as grain envelope and a sinewave as the grain wave. For this use, grain sizes of around 0.04
secs can be used. The formant centre frequency is determined by the grain pitch. Since this is
a sampling increment, in order to use a frequency in Hz, that value has to be scaled by
tablesize/sr. Grain frequency will determine the fundamental.

Construction
SyncGrain()
SyncGrain(Table* wavetable, Table* envtable, float fr, float amp, float pitch, float grsize,
float prate=1.f, SndObj* inputfr=0, SndObj* inputamp=0, SndObj* inputpitch=0,
SndObj* inputgrsize=0, int olaps=100, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetWaveTable(Table* wavetable)
void SetEnvelopeTable(Table* envtable)
void SetFreq(float fr, SndObj* inputfr=0)
void SetAmp(float amp, SndObj* inputamp=0)
void SetPitch(float pitch, SndObj* inputpitch=0)
void SetGrainSize(float grsize, SndObj* inputgrsize=0)
void SetPointerRate(float prate)

Messages
[set, connect] "frequency"
[set, connect] "grain size"
[set, connect]"grain pitch"
[set] "pointer rate"
[set, connect] "amplitude"
[connect] "source table"
[connect] "envelope table"

190

SndObj Library Reference Class SyncGrain

Details

construction
SyncGrain()
SyncGrain(Table* wavetable, Table* envtable, float fr, float amp, float pitch, float grsize,
float prate=1.f, SndObj* inputfr=0, SndObj* inputamp=0, SndObj* inputpitch=0,
SndObj* inputgrsize=0, int olaps=100, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the SyncGrain class. Construction parameters are:

Table* wavetable: pointer to a table object containing the source wave for the grains.
Table* envtable: pointer to a table object containing an envelope shape to be used to shape
the amplitude of the grains
float fr: grain frequency (or density) offset in Hz (grains/sec).
float amp: overall amplitude offset.
float pitch: grain pitch offset. This is a sampling increment, so that, for single-cycle
wavetables, it will relate to 'real' pitch in Hz when scaled by tablesize/sr.
float grsize: grain size offset in seconds.
float prate: pointer rate (speed). The reading pointer rate in relation to grain size: a value of 1
will make the read pointer read the wavetable skiping grainsize positions along it. A value of 0
will make the table be read always from the start position.
SndObj* inputfr: frequency input, a pointer to a SndObj object whose signal will be use to
control grain frequency (density).
SndObj* inputamp: amplitude input , a pointer to a SndObj object whose signal will be use to
control the overall amplitude.
SndObj* inputpitch: input pitch, a pointer to a SndObj object whose signal will be use to
control grain pitch.
SndObj* inputgrsize: grainsize input, a pointer to a SndObj object whose signal will be use to
control grain size.
int olaps: maximum number of overlaps. It should be calculated according to max_grainsize *
max_frequency. Used to allocated memory for parallel grain streams.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetWaveTable(Table* wavetable)
void SetEnvelopeTable(Table* envtable)

These methods set the tables used by a SyncGrain object for synthesis

void SetFreq(float fr, SndObj* inputfr=0)
void SetAmp(float amp, SndObj* inputamp=0)
void SetPitch(float pitch, SndObj* inputpitch=0)
void SetGrainSize(float grsize, SndObj* inputgrsize=0)

These methods set the four basic granular synthesis parameters: grain frequency (density),
overall amplitude, grain pitch and size.

void SetPointerRate(float prate)

This method sets the pointer speed, or rate, in relation to grain size: a value of 1 will make the
read pointer read the wavetable skiping grainsize positions along it. A value of 0 will make the
table be read always from the start position.

All of the above operations can also be effected by sending the appropriate set/connect
messages to an object, as listed above.

191

SndObj Library Reference Class SyncGrain

Examples

SyncGrain objects take their source sound from a Table object. The SndTable object stores
samples read from an input SndFIO object. The example below sets a table with 88200
samples (2 secs at 44100Hz) from the first channel of a SndFIO object named input:

SndTable sound(88200, &input, 1);
TriSegTable envel(2000, 0, 100.f, 1.f, 1500.f, 0.75f, 400.f, 0.f, 0.8f);
SyncGrain corn(&sound, &envel, 40.f, 10000.f, 1.f, 0.05f, 0.5f);

The SyncGrain object will generate 40 grains of 50 msecs each, keeping the original pitch
and timescale. There are 2 overlaps between grains, because of the relationship between
density and duration (40*0.05 = 2). If the pointer rate was running at the original speed, the
sound would be time-compressed. With pointer rate at 0.5, we restore the original length.
The processing loop only requires the call to SyncGrain::DoProcess() [and the output object
Write()]:

while(processing_on){

corn.DoProcess();
output.Write();

}

192

Class Table

Description
The Table class is the abstract base class for all the maths function-table objects in the
library. It provides basic methods to access the core elements of the table model, as well as
the pure virtual methods MakeTable() and ErrorMessage(), which are implemented in the
derived classes, and a virtual destructor. As this is an abstract class, it does not have
constructors and it is not used directly.

virtual short MakeTable()

Details

This method provides basic access to the function table itself. It returns a pointer to the first
location of an array of floats, the length of which can be obtained by GetLen().

virtual short MakeTable()

Public Methods
long GetLen()
float* GetTable()
float Lookup(int pos)

virtual char* ErrorMessage()

public methods
long GetLen()

This method returns the length of the function table.

float* GetTable()

 float Lookup(int pos)

This method performs a tableLookup combined with a simple modulus operation, returning
the value at the table mod[table_length]. It is an alternative way to access the table values
(the other is to use the pointer returned by GetTable())

virtual char* ErrorMessage()

These methods should be implemented in the derived classes to provide the class
functionality. MakeTable() builds the function table with an arbitrary algorithm or formula.
ErrorMessage() returns error strings relative to error codes. Derived classes should call
MakeTable() in the their constructor.

193

Class Tap

Description

Construction

Public Methods

void SetDelayTime(float delaytime)

[connect] “delay line”

Details

Tap()
Tap(float delaytime, DelayLine* DLine, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Tap class. Construction parameters are:

float delaytime: delay time of the tap, in seconds. It must be smaller than the delaytime of the
tapped object
DelayLine* DLine: the DelayLine object which will be tapped by this class
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.

public methods

void SetDelayTime(float delaytime)

These methods connect the DelayLine object to be tapped and set the delaytime,
respectively. The messages listed above can be used for the same purposes.

The following connections create three taps into a delay line:

DelayLine delay(1.f, &oscillator);
Tap tap1(0.01f, &delay);
Tap tap2(0.045f, & delay);
Tap tap3(0.078f, &delay);
// constructs a DelayLine object and taps it at three points: at 10, 45 and 78 milliseconds

The Tap class is used to create a fixed-delaytime tap on a DelayLine object. The delaytime
should be set to be not bigger than the tapped DelayLine object delaytime.

Tap()
Tap(float delaytime, DelayLine* DLine, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

void SetDelayLine(DelayLine* DLine)

Messages

[set] “delaytime”

construction

float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

void SetDelayLine(DelayLine* DLine)

Examples

194

Class Tapi

The Tapi class is used to create a variable-delaytime interpolating tap on a DelayLine object.
The variable delaytime should never be bigger than the tapped DelayLine object delaytime

Tapi()
Tapi(SndObj* delayinput, DelayLine* DLine, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

short SetDelayInput(SndObj* InObj)

[connect] “delay input”

construction

SndObj* delayinput: sets the variable delay input object. This object would normally output a
signal varying at most from 0 to the maximum delay time set by the DelayLine object being
tapped.
DelayLine* DLine: the DelayLine object which will be tapped by this class

 float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

short SetDelayInput(SndObj* InObj)

This method sets the variable delay tap input object.

The following example sets up a flanging effect created by varying the delay of the tap
between close to 0 and 10 msecs. The oscillator is using a waveshape that is always positive
(a hamming window shape).

Oscili lfo(&hamming, 1.2f, 0.01f);

Description

Construction

Public Methods

Messages

Details

Tapi()
Tapi(SndObj* delayinput, DelayLine* DLine, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the Tapi class. Construction parameters are:

int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.

public methods

Examples

DelayLine delay(0.02f, &inobj);
Tapi flange(&lfo, &delay);

195

Class TpTz

Description
This class implements a user-defined two-pole two-zero filter from input coefficients.

Construction
TpTz();
TpTz(double a, double a1, double a2, double b1, double b2, SndObj* input,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetParam(double a, double a1, double a2, double b1, double b2)

Messages
[set] “coefficient a0”
[set] “coefficient a1”
[set] “coefficient a2”
[set] “coefficient b1”
[set] “coefficient b2”

Details

construction
TpTz();
TpTz(double a, double a1, double a2, double b1, double b2, SndObj* input,
 int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct a TpTz object:

double a: the coefficient ‘a’, the input scaling coefficient.
double a1: the coefficient ‘a1’, multiplier of the 1-sample input delay.
double a2: the coefficient ‘a2’, multiplier of the 2-sample input delay.
double b1: the coefficient ‘b1’, multiplier of the 1-sample delayed output.
double b2: the coefficient ‘b2’, multiplier of the 2-sample delayed output.
SndObj* input: input signal object, a SndObj-derived object.
int vecsize: the object vector size, defaults to 256.
float sr: the object sampling rate: defaults to 44100.

public methods
void SetParam(double a, double a1, double a2, double b1, double b2)

This method sets the filter coefficients, as described above. The respective set messages
can also be used to set individual coefficient values.

Examples
TpTz objects are provided so that any 2nd order feedback filter can be implemented from its
coefficients. The example below shows the parameters to implement a butterworth band-
reject design, with a bandwidth of 100Hz and a centre frequency of 1000Hz:

double tmp1 = tan(PI*100/DEF_SR);
double tmp2 = 2*cos(2*PI*1000/DEF_SR);
double par1 = 1/(1+tmp1);
double par2 = -tmp2*par1

196

SndObj Library Reference Class TpTz

double par3 = (1-tmp1)*par2

TpTz butterworth_bandreject(par1,par2,par1,par2,par3,&inobj);

The processing loop will then feature a call to the filter DoProcess() method:

while(processing_on){
(...)
butterworth_bandreject.DoProcess();
(...)
}

Class TrisegTable

Description
The SndTable object builds a three-segment function table, with linear or exponentially-
shaped segments

Construction
TrisegTable()
TrisegTable(long L, long L, float init, float seg1, float p1, float seg2, float p2, float seg3,
 float fin, float type = 0.f)
TrisegTable(long L, float* TSPoints, float type = 0.f)

Public Methods
void SetCurve(float init, float seg1, float p1, float seg2, float p2, float seg3, float fin,
 float type = 0.f)
void SetCurve(float* TSPoints, float type = 0.f)

Details

construction
TrisegTable()
TrisegTable(long L, long L, float init, float seg1, float p1, float seg2, float p2, float seg3,
 float fin, float type = 0.f)
TrisegTable(long L, float* TSPoints, float type = 0.f)

Constructs a TrisegTable object.

long L: table length.
float init, fin: inital and final points of the curve.
float p1, p2: intermediary points.
float seg1, seg2, seg3: lengths of the three segments.
float type: type of curve. Linear = 0, inverse exponential < 0 < exponential.
float* TSPoints: pointer to the location of a 7-element float array containing the three-
segment curve breakpoints. They should be arranged in the following order: { init, seg1, p1,
seg2, p2, seg3, fin } .

public methods
void SetCurve(float init, float seg1, float p1, float seg2, float p2, float seg3, float fin,
 float type = 0.f)
void SetCurve(float* TSPoints, float type = 0.f)

197

SndObj Library Reference Class TrisegTable

These methods set the function table parameters. MakeTable() should be invoked after any
parameter resetting.

198

Class Unit

Description
This object generates signals which can be used for testing applications. The options are unit
sample (1 sample of amp value followed by 0s), unit step (DC with amp offset) and ramp
(ramping signal starting from amp increasing step times each sample)

Construction
Unit()
Unit(float amp, short mode=UNIT_SAMPLE, float step=0.f, int vecsize=DEF_VECSIZE,
float sr=DEF_SR)

Public Methods
void SetAmp(float amp)
void SetStep(float step)

Messages
[set] “mode”
[set] “step”
[set] “amplitude”

Details

construction
Unit()
Unit(float amp, short mode=UNIT_SAMPLE, float step=0.f, int vecsize=DEF_VECSIZE,
float sr=DEF_SR)

These methods construct an object of the Unit class. Construction parameters are:

float amp: amplitude.
short mode: type of output test signal, UNIT_SAMPLE, UNIT_STEP, RAMP
float step: value added to the previous sample every sample period (starting from amp) ,
used in the RAMP mode.
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f

public methods
void SetAmp(float amp)
void SetStep(float step)

These methods set the two Unit parameters, step and amp. These, plus the generation mode,
can also be set using the messages listed above.

Examples
A ramp signal can be generated with the following Unit object:

Unit ramp(0, RAMP, 1.f);

This will generate a ramp from 0, increasing by 1 every sample.

199

Class UsrDefTable

Description
The UsrDefTable implements a multi-purpose user-defined table object. It builds the object
around an user-defined array of floats.

Construction
UsrDefTable()
UsrDefTable(long L, float* values)

Public Methods
void SetTable(long L, float* values)

public methods

Details

construction
UsrDefTable()
UsrDefTable(long L, float* values)

Constructs a UsrDefTable object.

long L: table length.
float* values: pointer to the first location of an array of floats of length L.

void SetTable(long L, float* values)

This method sets the function table parameters. MakeTable() should be invoked after any
parameter resetting.

200

Class UsrHarmTable

Description

Public Methods

construction

public methods
void SetHarm(int harm, float *amps)

Harmonic function table. Generates any type of wave with any number of harmonics.

Construction
UsrHarmTable()
UsrHarmTable(long L, int harm, float* amps)

void SetHarm(int harm, float *amps)

Details

UsrHarmTable()
UsrHarmTable(long L, int harm, float* amps)

Constructs a HarmTable object.

long L: table length.
int harm: number of harmonics. Defaults to 1
float* amps: pointer to the first location of an array of floats containing the individual
harmonics amplitudes, starting from the lowest order harmonic. The size of the array is
related to the number of harmonics defined.

This method sets the function table parameters. MakeTable() should be invoked after any
parameter resetting.

201

Class VDelay

Description
The VDelay object is a variable delay processor with feedback and feedfoward connections.
The delay time is controlled by an input SndObj-derived object, and the various gain controls
can also be dynamically controlled by other objects

Construction
VDelay()
VDelay(float maxdelaytime, float fdbgain, float fwdgain, float dirgain, SndObj* InObj,
 SndObj* InVdtime, SndObj* InFdbgain=0, SndObj* InFwdgain=0,
 SndObj* InDirgain=0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)
VDelay(float maxdelaytime, float delaytime, float fdbgain, float fwdgain, float dirgain,
 SndObj* InObj, SndObj* InVdtime=0, SndObj* InFdbgain=0, SndObj* InFwdgain=0,
 SndObj* InDirgain=0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

Public Methods
void SetMaxDelayTime(float MaxDelaytime)
void SetDelayTime(float delaytime)
void SetVdtInput(SndObj* InVdtime)
void SetFdbgain(float fdbgain, SndObj* InFdbgain=0)
void SetFwdgain(float fwdgain, SndObj* InFwdgain=0)
void SetDirgain(float fwdgain, SndObj* InDirgain=0)

Messages
[set,connect] "delaytime"
[set] "maxdelaytime"
[set,connect] "direct gain"
[set,connect] "feedback gain"
[set,connect] "feedforward gain"

Details

construction
VDelay()
VDelay(float maxdelaytime, float fdbgain, float fwdgain, float dirgain, SndObj* InObj,
 SndObj* InVdtime, SndObj* InFdbgain=0, SndObj* InFwdgain=0,
 SndObj* InDirgain=0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)
VDelay(float maxdelaytime, float delaytime, float fdbgain, float fwdgain, float dirgain,
 SndObj* InObj, SndObj* InVdtime=0, SndObj* InFdbgain=0, SndObj* InFwdgain=0,
 SndObj* InDirgain=0, int vecsize=DEF_VECSIZE, float sr=DEF_SR)

These methods construct an object of the VDelay class. Construction parameters are:

float maxdelaytime: sets the max delay time of the process, in seconds. If the variable delay
input signal exceed this value, it is ignored and the delay time is set to maxdelaytime
seconds. The variable delay input signal varies the input above and below maxdelaytime/2
seconds (a positive signal increase the delay above it and negative one decreases it).
float delaytime: delaytime offset, added to the signal from the input variable delaytime object,
if there is one [use third constructor for this parameter].
float fdbgain: gain offset factor of the signal re-entering the delay line. Normally < 1.
float fwdgain: gain offset factor of the forward fed signal. Normally < 1.
float dirgain: gain offset factor of the signal bypassing the network (direct signal), which is
added to the signal coming out of it. Normally < 1.

202

SndObj Library Reference Class VDelay

SndObj* InObj: input object, pointer to the location of a SndObj-derived class.
SndObj* InVdtime: variable delaytime control input object, pointer to the location of a SndObj-
derived class. This input object controls the varying delay time and it should generate a signal
centered on 0 (i.e. having a DC offset of 0), when there is no delaytime offset. For flanging
applications, a low-frequency oscillator is normally used. In the third constructor this argument
defaults to 0.
SndObj* InFdbGain: feedback gain control input, pointer to the location of a SndObj-derived
class. The output signal from this object is added to the fdbgain value before it is used.
Defaults to 0, no frequency input object
SndObj* InFwdGain: feedforward gain control input, pointer to the location of a SndObj-
derived class. The output signal from this object is added to the fwdgain value before it is
used. Defaults to 0, no frequency input object
SndObj* InDirGain: direct gain control input, pointer to the location of a SndObj-derived class.
The output signal from this object is added to the dirgain value before it is used. Defaults to 0,
no frequency input object
int vecsize: vector size in samples. Size of the internal DSP buffer, defaults to
DEF_VECSIZE, 256.
float sr: sampling rate in HZ. Defaults to DEF_SR, 44100.f.

public methods
void SetMaxDelayTime(float MaxDelaytime)
void SetDelayTime(float delaytime)
void SetVdtInput(SndObj* InVdtime)
void SetFdbgain(float fdbgain, SndObj* InFdbgain=0)
void SetFwdgain(float fwdgain, SndObj* InFwdgain=0)
void SetDirgain(float fwdgain, SndObj* InDirgain=0)

These methods set the various parameters associated with the object. Set/Connect
messages, as listed above, can also be used to change these values.

Examples
VDelay objects are used to generate variable-delay effects, such as vibrato, chorus and
flanging. The connections shown below demonstrating the implementation of a flanging effect:

Oscili lfo(&sine, 1.2f, 0.01f);
VDelay flange(0.02f, 0.5f, 0.5f, 0.5f, &inobj, &lfo);

The processing loop would look something like this:

while(processing_on){

inobj.DoProcess();
lfo.DoProcess();
flange.DoProcess();
output.Write();

}

203

	The Sound Object Library Reference Manual
	Victor Lazzarini
	Preface
	Acknowledgements
	Copyright Notice
	License Notice
	Table of Contents
	SndObj Programming Concepts
	What is a SndObj?
	Generating output
	Connecting SndObjs
	Manipulating SndObjs
	Input and Output
	Function Tables
	Frequency-domain issues
	Processing threads

	Library Classes
	Class ADSR
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class AdSyn
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Allpass
	Description
	Construction
	Details
	Examples

	Class Balance
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Bend
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class ButtBP
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class ButtBR
	Description
	Construction
	Details
	Examples

	Class ButtHP
	Description
	Construction
	Details
	Examples

	Class ButtLP
	Description
	Construction
	Details
	Examples

	Class Buzz
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Comb
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Convol
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class DelayLine
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class EnvTable
	Description
	Construction
	Public Methods
	Details

	Class FastOsc
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class FFT
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Filter
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class FIR
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Gain
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class HammingTable
	Description
	Construction
	Public Methods
	Details

	Class HarmTable
	Description
	Construction
	Public Methods
	Details

	Class Name
	Description
	Construction
	Public Member Variables
	Details

	Class HiPass
	Description
	Construction
	Details
	Examples

	Class IADSR
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class IFAdd
	Description
	Construction
	Details
	Examples

	Class IFFT
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class IFGram
	Description
	Construction
	Details
	Examples

	Class ImpulseTable
	Description
	Construction
	Public Methods
	Details

	Class Interp
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Lookup
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Lookupi
	Description
	Construction
	Details
	Examples

	Class LowPass
	Description
	Construction
	Details
	Examples

	Class LoPassTable
	Description
	Construction
	Public Methods
	Details

	Class LP
	Description
	Construction
	Details
	Examples

	Class MidiMap
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class MidiIn
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Mixer
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class NoteTable
	Description
	Construction
	Public Methods
	Details

	Class Osc
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Osci
	Description
	Construction
	Details
	construction
	Examples

	Class Oscil
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Oscili
	Construction
	Details
	Examples

	Class Oscilt
	Construction
	Details
	Examples

	Class Pan
	Description
	Construction
	Public Members
	Public Methods
	Messages
	Details
	Examples

	Class Phase
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class PhOscili
	Description
	Construction
	Messages
	Details
	Examples

	Class Pitch
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class PlnTable
	Description
	Construction
	Public Methods
	Details

	Class Pluck
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class PVA
	Description
	Construction
	Public Methods
	Details
	Examples

	Class PVBlur
	Description
	Construction
	Details
	Examples

	Class PVEnvTable
	Description
	Construction
	Public Methods
	Details

	Class PVMask
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class PVMix
	Description
	Construction
	Details
	Examples

	Class PVMorph
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class PVRead
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class PVTransp
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class PVS
	Description
	Construction
	Details
	Examples

	Class PVTable
	Description
	Construction
	Public Methods
	Details

	Class Rand
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Randh
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Randi
	Description
	Construction
	Details
	Examples

	Class ReSyn
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Ring
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class SinAnal
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class SinSyn
	Description
	Construction
	Public Methods
	Message
	Details
	Examples

	Class SndAiff
	Description
	Construction
	Details
	Examples

	Class SndASIO
	Description
	Construction
	Utilities
	Details
	Examples

	Class SndBuffer
	Description
	Construction
	Details
	Examples

	Class SndCoreAudio
	Description
	Construction
	Details
	Examples

	Class SndFIO
	Description
	Construction
	Public Methods
	Details
	Examples

	Class SndIn
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class SndIO
	Description
	Construction
	Protected Members
	Public Methods
	Details
	Examples

	Class SndJackIO
	Description
	Construction
	Public Methods
	Details
	Examples

	Class SndLoop
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class SndMidiIn [/SndMidi]
	Description
	Construction
	Public Methods
	Details
	Examples

	Class SndObj
	Description
	Construction
	Protected Member Variables
	Protected Methods
	Public Methods
	Messages
	Details
	Examples

	Class SndPVOCEX
	Description
	Construction
	Public Methods
	Details

	Class SndRead
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class SndRTIO
	Description
	Construction
	Details
	Examples

	Class SndSinIO
	Description
	Construction
	Public Methods
	Details

	Class SndTable
	Description
	Construction
	Public Methods
	Details

	Class SndThread
	Description
	Construction
	Public Methods
	Details
	Examples

	Class SndWave
	Description
	Construction
	Details
	Examples

	Class SndWaveX
	Description
	Construction
	Public Methods
	Details
	Examples

	Class SpecCart
	Description
	Construction
	Details
	Examples

	Class SpecCombine
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class SpecEnvTable
	Description
	Construction
	Details

	Class SpecIn
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class SpecInterp
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class SpecMult
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class SpecPolar
	Description
	Construction
	Details
	Examples

	Class SpecSplit
	Description
	Construction
	Public Members
	Details
	Examples

	Class SpecThresh
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class SpecVoc
	Description
	Construction
	Details
	Examples

	Class StringFlt
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class SyncGrain
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Table
	Description
	Public Methods
	Details

	Class Tap
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class Tapi
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class TpTz
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class TrisegTable
	Description
	Construction
	Public Methods
	Details

	Class Unit
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

	Class UsrDefTable
	Description
	Construction
	Public Methods
	Details

	Class UsrHarmTable
	Description
	Construction
	Public Methods
	Details

	Class VDelay
	Description
	Construction
	Public Methods
	Messages
	Details
	Examples

